Предположим, что существует натуральное число b такое, что b⁴=5a⁴+13 (знак b значения не имеет, поэтому достаточно доказать, что таких натуральных чисел нет). Тогда число b можно записать как 5n+r, где r - остаток от деления числа b на 5. Получаем равенство (5n+r)⁴=5a⁴+13. Заметим, что правая часть имеет остаток 3 при делении на 5, а значит, число b⁴ имеет остаток 3 при делении на 5 и r≠0. Выражение (5n+r)⁴ имеет такой же остаток при делении на 5, что и число r⁴ (если мы раскроем скобки, то слагаемое r⁴ окажется единственным, не делящимся на 5). Легко проверить, что при r=1,2,3,4 число r⁴ имеет остаток 1 при делении на 5. Мы получили противоречие, следовательно, такого числа b не существует и число 5a⁴+13 не является четвертой степенью никакого целого числа.
НАПРИКЛАД :Из полного набора костей домино наугад берутся две кости. Определить вероятность того, что вторую кость можно приставить к первой?Решение.Всего 28 костей домино: 7 дублей и 21 с разными числами. Числа от 0 до 6.Количество вариантов выбора 2 костей равно 28*27=756. Порядок имеет значение. Это используем и дальше.Подсчитаем количество благоприятных случаев (чтобы кости подходили, т.е. совпадало хотя бы по одному значению на обеих костях).Если первая кость дубль, то это 7 вариантов. К ней подходит 6 "не дублей". Всего 7*6=42Если первая - "не дубль", то таких костей 21. К первому числу подходит 6 костей и ко второму числу 6 костей, значит для первой кости - "не дубль" подходит 12 вариантов, а всего благоприятных исходов 21*12 = 252.Общее кол-во благоприятных исходов 42+252 = 294. Р = 294/756 = 0,388...≈ 0,389