Периметр прямоугольника 32 см. На одной из его сторон построен квадрат, площадь которого 36 см2. На стороне данного прямоугольника построен новый прямоугольник, площадь которого в 2 раза больше площади данного прямоугольника. Найдите периметр нового прямоугольника.БЕЗ ДОП. ОБЪЯСНЕНИЙ
1 скатерть = 4 салфетки,обозначим это а₁=4,
Каждый следующий козлёнок брал 1 салфетку,а возвращал в сундук 4,
4-1=3 -то есть прибавлял 3 салфетки в сундук,на одну меньше,чем первый козлёнок,обозначим это а₂=а₁-1=3,
Все следующие козлята,а их было 6-ть, так же брали 1 салфетку,а возвращали 4,то есть шестеро козлят добавили по 3 салфетки каждый,отсюда получаем
а₂ * 6 = 3 * 6=18 -обозначим это d=а₂* 6,
Составим выражение,где а₇ -это общее количество получившихся салфеток:
а₇=а₁+ d =а₁+а₂ * 6=4 + 3*6=4+18 = 22-салфетки,
ответ: у семерых козлят и мамы-козы теперь есть 22 салфетки.
5.27 уравниваем
√2х²-3х+1=√х²-3х+2
подносим всё уравнение ко второй степени, тогда корень пропадает
2х²-3х+1=х²-3х+2
переносим всё в одну сторону с противоположным знаком
2х²-3х+1-х²+3х-2=0
упрощаем
х²-1=0
х²=1
х=±1
это неполное квадратное уравнение, если будет полное типа ах²±bx±c=0, тогда применяем дискриминант или теорему Виета( за условия что а=1). дискриминант должен быть больше или равно нулю!
так делаем с 5.28 по 5.34 включительно
пройдёмся по остальным уравнениям:
из 5.35 включительно по 5.48
5.35 нужно поднести к квадрату всё уравнение
3х+1=√1-х
(3х+1)²=1-х
раскрываем скобки по формуле:
(а±b)²=a²±2ab+b²
9х²+6х+1=1-х
переносим в одну сторону
9х²+6х+1-1+х=0
9х²+7х=0
так же неполное квадратное уравнение только в ином виде
выносим х за скобки
х(9х+7)=0
х=0 или 9х+7=0
9х=-7
х=-7/9
если полное квадратное смотреть указания выше↑
5.40
√8-6х-х²=6+х
далее к квадрату и по схеме
5.46
если это уравнение поднести к квадрату то в левой части х²+8 умножиться на 4 (так как 2²=4) и будет 4х²+32=(2х+1)²
далее так же по схеме
это касательно уравнений с 5.45 по 5.48