а) По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={3+4+5 \over 2}=6
3+4+5
=6
S=\sqrt{6 \cdot (6-3) \cdot (6-4) \cdot (6-5)} = 6
6⋅(6−3)⋅(6−4)⋅(6−5)
S = 6S=6
б)По формуле Герона:
p={13+14+15 \over 2}=21
13+14+15
=21
S=\sqrt{21 \cdot (21-13) \cdot (21-14) \cdot (21-15)} = 84
21⋅(21−13)⋅(21−14)⋅(21−15)
=84
S = 84S=84
в)По формуле Герона:
p={31+45+51 \over 2}=63.5
31+45+51
=63.5
S=\sqrt{63.5 \cdot (63.5-31) \cdot (63.5-45) \cdot (63.5-51)} = 690.827
63.5⋅(63.5−31)⋅(63.5−45)⋅(63.5−51)
=690.827
S = 690.827S=690.827
г)По формуле Герона:
p={9+21+15 \over 2}=22.5
9+21+15
=22.5
S=\sqrt{22.5 \cdot (22.5-9) \cdot (22.5-21) \cdot (22.5-15)} = 58.457
22.5⋅(22.5−9)⋅(22.5−21)⋅(22.5−15)
=58.457
S = 58.457S=58.457
д)По формуле Герона:
p={30+40+50 \over 2}=60
30+40+50
=60
S=\sqrt{60 \cdot (60-30) \cdot (60-40) \cdot (60-50)} = 600
60⋅(60−30)⋅(60−40)⋅(60−50)
=600
S = 600S=600
Пошаговое объяснение:
ответ:
пошаговое объяснение:
дано:
авсд - трапеция
ав=12см
сд=13см
угол авс=уголсад(биссектриса делит пополам)
найти:
sавсд
решение :
проведем вн_i_ад всдн- прямоугольник сд=вн=12 см вс=дн.
из треугольника авн ан=корень 169-144=5 см.
треугольник авс. угол сад=вса - как внутренний накрест лежащий при вс//ад. углы при основании равны равны и боковые стороны ав=вс=13.
ад=ан+нд=13+5=18 см.
s=½h(a+b)
sabcd=12/2(13+18)=6*31=234 см ^2
или
пусть трапеции abcd, где прямой угол - а.. проведём высоту из т. с. назовём её со. бис-са выходит из угла d. тогда
1)угол dbc=bda, тк являбтся накрест лежащимт при прямых bc и ad и секущей bd. тогда получается, что треуг bd равнобедренный.
2) в ранобедренном трег боковые стороны равны. bc=cd=13см.
3) рассмотрим прямоуг. abco. в прямоуг противолежсщие стороны равны. ab=co=12, bc=ao=13.
4) рассмотрим треуг cod. по теореме пифагора оd^2= 169-144=25. значит od=5см.
5) ad=13+5=18см
6)sabcd=12/2(13+18)=6*31=234 см ^2
а) По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={3+4+5 \over 2}=6
p=
2
3+4+5
=6
S=\sqrt{6 \cdot (6-3) \cdot (6-4) \cdot (6-5)} = 6
S=
6⋅(6−3)⋅(6−4)⋅(6−5)
=6
S = 6S=6
б)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={13+14+15 \over 2}=21
p=
2
13+14+15
=21
S=\sqrt{21 \cdot (21-13) \cdot (21-14) \cdot (21-15)} = 84
S=
21⋅(21−13)⋅(21−14)⋅(21−15)
=84
S = 84S=84
в)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={31+45+51 \over 2}=63.5
p=
2
31+45+51
=63.5
S=\sqrt{63.5 \cdot (63.5-31) \cdot (63.5-45) \cdot (63.5-51)} = 690.827
S=
63.5⋅(63.5−31)⋅(63.5−45)⋅(63.5−51)
=690.827
S = 690.827S=690.827
г)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={9+21+15 \over 2}=22.5
p=
2
9+21+15
=22.5
S=\sqrt{22.5 \cdot (22.5-9) \cdot (22.5-21) \cdot (22.5-15)} = 58.457
S=
22.5⋅(22.5−9)⋅(22.5−21)⋅(22.5−15)
=58.457
S = 58.457S=58.457
д)По формуле Герона:
S=\sqrt{p \cdot (p-a) \cdot (p-b) \cdot (p-c)}
S=
p⋅(p−a)⋅(p−b)⋅(p−c)
, где:
p={a+b+c \over 2}
p=
2
a+b+c
— полупериметр.
p={30+40+50 \over 2}=60
p=
2
30+40+50
=60
S=\sqrt{60 \cdot (60-30) \cdot (60-40) \cdot (60-50)} = 600
S=
60⋅(60−30)⋅(60−40)⋅(60−50)
=600
S = 600S=600
Пошаговое объяснение:
ответ:
пошаговое объяснение:
дано:
авсд - трапеция
ав=12см
сд=13см
угол авс=уголсад(биссектриса делит пополам)
найти:
sавсд
решение :
проведем вн_i_ад всдн- прямоугольник сд=вн=12 см вс=дн.
из треугольника авн ан=корень 169-144=5 см.
треугольник авс. угол сад=вса - как внутренний накрест лежащий при вс//ад. углы при основании равны равны и боковые стороны ав=вс=13.
ад=ан+нд=13+5=18 см.
s=½h(a+b)
sabcd=12/2(13+18)=6*31=234 см ^2
или
пусть трапеции abcd, где прямой угол - а.. проведём высоту из т. с. назовём её со. бис-са выходит из угла d. тогда
1)угол dbc=bda, тк являбтся накрест лежащимт при прямых bc и ad и секущей bd. тогда получается, что треуг bd равнобедренный.
2) в ранобедренном трег боковые стороны равны. bc=cd=13см.
3) рассмотрим прямоуг. abco. в прямоуг противолежсщие стороны равны. ab=co=12, bc=ao=13.
4) рассмотрим треуг cod. по теореме пифагора оd^2= 169-144=25. значит od=5см.
5) ad=13+5=18см
s=½h(a+b)
6)sabcd=12/2(13+18)=6*31=234 см ^2