Рассмотрим треугольник ABC. В нем провели медианы AE и CD. Так как D - середина AB, E - середина BC, то DE - средняя линия ABC. Треугольники DBE и ABC подобны с коэффициентом подобия 1/2. То есть S_DBE / S_ABC = (1/2)^2=1/4. S_ABC=4*S_DBE, S_ADEC = S_ABC - S_DBE = 3*S_DBE, Отсюда S_ABC = 4/3 * S_ADEC. Рассмотрим четырехугольник ADEC. Это равнобокая трапеция, у которой диагонали равна d=6, а синус угла между диагоналями равен sinα=1/3. Площадь его равна S_ADEC=1/2*d^2*sinα=1/2*6^2*1/3=6. S_ABC=4/3*6=8. ответ: 2)8.
1680 кг - весь собранный лук (целое) Первая бригада - 3/4 всего собранного лука Вторая бригада - 34% остатка Третья бригада - в 1 1/3 раза больше, чем вторая Четвёртая бригада - ?
Треугольники DBE и ABC подобны с коэффициентом подобия 1/2. То есть S_DBE / S_ABC = (1/2)^2=1/4.
S_ABC=4*S_DBE,
S_ADEC = S_ABC - S_DBE = 3*S_DBE,
Отсюда S_ABC = 4/3 * S_ADEC.
Рассмотрим четырехугольник ADEC. Это равнобокая трапеция, у которой диагонали равна d=6, а синус угла между диагоналями равен sinα=1/3. Площадь его равна S_ADEC=1/2*d^2*sinα=1/2*6^2*1/3=6.
S_ABC=4/3*6=8.
ответ: 2)8.
Первая бригада - 3/4 всего собранного лука
Вторая бригада - 34% остатка
Третья бригада - в 1 1/3 раза больше, чем вторая
Четвёртая бригада - ?
1) 1680 * 3/4 = 1680 : 4 * 3 = 1260 (кг) - собрала первая бригада;
2) 1680 - 1260 = 420 (кг) - оставшийся лук;
3) 420 * 0,34 = 142,8 (кг) - собрала вторая бригада (34% остатка);
4) 142,8 * 4/3 = 142,8 : 3 * 4 = 190,4 (кг) - собрала третья бригада;
5) 1680 - (1260 + 142,8 + 190,4) = 1680 - 1593,2 = 86,8 (кг) - собрала четвёртая бригада.
Проверка: 1260 + 142,8 + 190,4 + 86,8 = 1680 (целое)
ответ: 86,8 кг лука собрала четвёртая бригада.
Пояснения:
1 целая 1/3 = (1*3+1)/3 = 4/3
34% = 34/100 = 0,34