Допустим что это возможно и такая точка O существует. Пусть A, B, C, D — вершины квадрата (перечисленные не обязательно в треугольника для треугольника порядке обхода контура), причем OA = 5, OB = 1. Тогда из неравенства треугольника для треугольника OAB получаем, что AB не меньше 6. Т.к. АВ — это либо сторона квадрата, либо диагональ, то мы заключаем отсюда, что длина стороны квадрата не превосходит 6. Один из отрезков BC и BD является стороной квадрата. Пусть это будет отрезок BC. Тогда в треугольнике OBC длина OC равна 8 или 9, OB = 1, BC не превосходит 6. Получили противоречие с неравенством треугольника. Значит, ситуация, описанная в условии невозможна.
В конце марта 1771 года, во время первого путешествия по Италии, Леопольд Моцарт с сыном задержались в Болонье, чтобы познакомиться с падре Мартини. Этот выдающийся композитор, историк и теоретик музыки был членом и фактическим руководителем болонской Филармонической академии, самого известного музыкального института своего времени. Диплом академии открывал двери ко многим престижным и хорошо оплачиваемым должностям. Отец Моцарта постарался устроить знакомство сына с падре Мартини. Мартири сразу же отметил талант Моцарта и с радостью взялся готовить его к экзамену в Филармоническую академию. Три месяца подряд Моцарт ходил к нему каждый день, постигая под его руководством тайны контрапункта и прочие музыкальные премудрости. 9 октября он с успехом сдал экзамен, переработав для четырех партий григорианский антифон «Quaerite primum regnum Dei».
:(
Забегая вперед, скажу, что никаких особенных преимуществ диплом Филармонической академии Моцарту не дал, однако о занятиях с падре Мартини он сохранил самые благодарные воспоминания.
Допустим что это возможно и такая точка O существует. Пусть A, B, C, D — вершины квадрата (перечисленные не обязательно в треугольника для треугольника порядке обхода контура), причем OA = 5, OB = 1. Тогда из неравенства треугольника для треугольника OAB получаем, что AB не меньше 6. Т.к. АВ — это либо сторона квадрата, либо диагональ, то мы заключаем отсюда, что длина стороны квадрата не превосходит 6. Один из отрезков BC и BD является стороной квадрата. Пусть это будет отрезок BC. Тогда в треугольнике OBC длина OC равна 8 или 9, OB = 1, BC не превосходит 6. Получили противоречие с неравенством треугольника. Значит, ситуация, описанная в условии невозможна.
Пошаговое объяснение
В конце марта 1771 года, во время первого путешествия по Италии, Леопольд Моцарт с сыном задержались в Болонье, чтобы познакомиться с падре Мартини. Этот выдающийся композитор, историк и теоретик музыки был членом и фактическим руководителем болонской Филармонической академии, самого известного музыкального института своего времени. Диплом академии открывал двери ко многим престижным и хорошо оплачиваемым должностям. Отец Моцарта постарался устроить знакомство сына с падре Мартини. Мартири сразу же отметил талант Моцарта и с радостью взялся готовить его к экзамену в Филармоническую академию. Три месяца подряд Моцарт ходил к нему каждый день, постигая под его руководством тайны контрапункта и прочие музыкальные премудрости. 9 октября он с успехом сдал экзамен, переработав для четырех партий григорианский антифон «Quaerite primum regnum Dei».
:(
Забегая вперед, скажу, что никаких особенных преимуществ диплом Филармонической академии Моцарту не дал, однако о занятиях с падре Мартини он сохранил самые благодарные воспоминания.