По вкладу "а" банк в конце каждого года планирует увеличивать на 10% сумму, имеющуюся на вкладе в начале года, а по вкладу "б" - увеличивать эту сумму на 9% в первый год и на одинаковое целое число n процентов, и за второй, и за третий годы. найдите наименьшее значение n, при котором за три года хранения вклад "б" окажется выгоднее "а" при одинаковых суммах первоначальных взносов.
Вклад Б в первый год увеличится в 1,09 раза, а во второй и третий года в 1+n/100.
Вклад Б должен быть выгоднее вклада А, значит можно составить неравенство
1,1³<1,09*(1+n/100)²
(1+n/100)²>1,1³/1,09
1+n/100>√(1,1³/1,09)
n>(√(1,1³/1,09)-1)*100
n>10,5
Учитывая что n целое число, то n≥11%
Ставка по кредитному плану Б должна быть не меньше 11% начиная со второго года.