Решение: n = -21*a - 50*bm = 2*(a/5 - b/3) - 3*(a/4 - b/2) решаем методом гауса: дана система ур-ний n=−21a−50bn=−21a−50b m=2(a5−b3)−3a4−3b2m=2(a5−b3)−3a4−3b2 систему ур-ний к каноническому виду 21a+50b+n=021a+50b+n=0 7a20−5b6+m=07a20−5b6+m=0 запишем систему линейных ур-ний в матричном виде [07201121050−5600][012150072010−560] во 2 ом столбце [11][11] делаем так, чтобы все элементы, кроме 2 го элемента равнялись нулю. - для этого берём 2 ую строку [72010−560][72010−560] , и будем вычитать ее из других строк: из 1 ой строки вычитаем: [−720021−−56+500]=[−72002130560][−720021−−56+500]=[−72002130560] получаем [−720720012103056−5600][−7200213056072010−560] составляем элементарные ур-ния из решенной матрицы и видим, что эта система ур-ния не имеет решений −7x120+21x3+305x46=0−7x120+21x3+305x46=0 7x120+x2−5x46=07x120+x2−5x46=0 получаем ответ: данная система ур-ний не имеет решений
Зная, что с первого озера улетело 29 уток, а со второго - 11; после этого на первом озере их стало в 7 раз меньше, чем на втором, составим уравнение:
7*(х-29)=х-11;
Раскроем скобки в правой части уравнответ:
Пусть на первом озере было х уток, тогда и на втором озере их было х. ения:
7х-203=х-11;
Перенесем неизвестные слагаемые в левую сторону, а числа - в правую:
7х-х=-11+203;
Приведем подобные слагаемые:
6х=192;
х=192/6;
х=32.
ответ: на каждом озере первоначально было по 32 утки.
Пошаговое объяснение: