1 , –1 , 2 .
Пошаговое объяснение:
А) по формулам Крамера:
Определитель не равен нулю ⇒ матрица совместна.
Теперь поочерёдно вместо 1-го, 2-го и 3-го столбцов будем подставлять столбец свободных членов:
Для того, чтобы найти x, y и z, разделим значения полученных определителей на значение исходного определителя соответственно:
Б) методом Гаусса:
Запишем матрицу, элементами которой являются коэффициенты при переменных. За чертой расположим свободные члены:
Умножая все элементы первой строки на –2 и складывая почленно с элементами второй строки, получим:
Умножая все элементы первой строки на –1 и складывая почленно с элементами третьей строки, получим:
Умножая все элементы второй строки на 0,2 и складывая почленно с элементами третьей строки, получим:
Запишем систему уравнений с новыми данными:
1 , –1 , 2 .
Пошаговое объяснение:
А) по формулам Крамера:
Определитель не равен нулю ⇒ матрица совместна.
Теперь поочерёдно вместо 1-го, 2-го и 3-го столбцов будем подставлять столбец свободных членов:
Для того, чтобы найти x, y и z, разделим значения полученных определителей на значение исходного определителя соответственно:
Б) методом Гаусса:
Запишем матрицу, элементами которой являются коэффициенты при переменных. За чертой расположим свободные члены:
Умножая все элементы первой строки на –2 и складывая почленно с элементами второй строки, получим:
Умножая все элементы первой строки на –1 и складывая почленно с элементами третьей строки, получим:
Умножая все элементы второй строки на 0,2 и складывая почленно с элементами третьей строки, получим:
Запишем систему уравнений с новыми данными:
57269 7276
-49993 * 89
7276 65484
58208
647564
8704+х=647564 647564
х=647564-8704 - 8704
х=638860 638860
2) x *(375+25):5=1586+30414
375 400 : 5 30414
+ 25 - 40 80 + 1586
400 0 32000
х*80=32000 32000 : 80
х=32000:80 - 320 400
х=400 0
3) (631118-41873):35 *0 * 5794 +x=318106:53
0+х=318106:53 318106 :53
- 318 6002
1
-0
10
- 0
106
-106
0
0+х=6002
х=6002