краткая запись:
6 дней-120 спальных мешков
1 день-? мешков? дней-100 спальных мешков,если на 5м.б.
решение: 120: 6=20-мешков один день
20+5=25(мешков)
100: 25=4(дня)
Выразим параметры вписанного конуса через его переменную высоту H и заданный радиус шара R (константа).
Vконуса = (1/3)SoH.
Радиус ro основания конуса равен:
ro² = R² - (H - R)².
So = πro² = π*(R² - (H - R)²).
Получаем формулу объёма:
V = (1/3)*π*(R² - (H - R)²)*H.
Для нахождения экстремума находим производную объёма по Н и приравниваем нулю.
V'(H) = (1/3)πH*(4R - 3H) = 0.
Нулю может быть равно только выражение в скобках.
4R - 3H = 0.
Отсюда получаем ответ: высота конуса при максимальном объёме равна H = (4/3)R.
краткая запись:
6 дней-120 спальных мешков
1 день-? мешков? дней-100 спальных мешков,если на 5м.б.
решение: 120: 6=20-мешков один день
20+5=25(мешков)
100: 25=4(дня)
Выразим параметры вписанного конуса через его переменную высоту H и заданный радиус шара R (константа).
Vконуса = (1/3)SoH.
Радиус ro основания конуса равен:
ro² = R² - (H - R)².
So = πro² = π*(R² - (H - R)²).
Получаем формулу объёма:
V = (1/3)*π*(R² - (H - R)²)*H.
Для нахождения экстремума находим производную объёма по Н и приравниваем нулю.
V'(H) = (1/3)πH*(4R - 3H) = 0.
Нулю может быть равно только выражение в скобках.
4R - 3H = 0.
Отсюда получаем ответ: высота конуса при максимальном объёме равна H = (4/3)R.