Пусть А - начало координат Ось X -AB Ось Y -AD Ось Z- AA1 Координаты интересующих точек В(1;0;0) D1(0;1;1) C(1;1;0) B1(1;0;1) C1(1;;1;1) А1(0;0;1) Направляющий вектор BD1 (-1;1;1) Уравнение плоскости АСВ1 аx+by+cz=0 проходит через 0 Подставляем координаты точек а+b=0 a+c=0 Пусть а= -1 тогда b=1 c=1 Уравнение -x+y+z=0 Угол между BD1 и плоскостью sin a = | -1*-1+1*1+1*1|/(√3*√3)= 1 a = 90 что и требовалось доказать
Если числа идут подряд, то их можно представить так:
n-5; n-4; n-3; n-2; n-1; n; n+1; n+2; n+3; n+4; n+5.
Число n при делении на 19 может давать остатки от 0 до 18:
0: n = 19k - тогда (n-1)+(n+1) = 2n = 2*19k
1: n = 19k + 1 - тогда (n-2)+n = 2n-2 = 2*19k + 2 - 2 = 2*19k
2: n = 19k + 2 - тогда (n-4)+n = 2n-4 = 2*19k + 4 - 4 = 2*19k
3: n = 19k + 3 - тогда (n-5)+(n-1) = 19k+3-5+19k+3-1 = 2*19k
4. n = 19k + 4 - тогда (n-5)+(n-3) = 19k+4-5+19k+4-3 = 2*19k
5. n = 19k + 5 - тогда (n+4)+(n+5) = 19k+5+4+19k+5+5 = 2*19k+19
6. n = 19k + 6 - тогда (n+2)+(n+5) = 19k+6+2+19k+6+5 = 2*19k+19
7. n = 19k + 7 - тогда (n+2)+(n+3) = 19k+7+2+19k+7+3 = 2*19k+19
8. n = 19k + 8 - тогда (n+1)+(n+2) = 19k+8+1+19k+8+2 = 2*19k+19
9. n = 19k + 9 - тогда n+(n+1) = 19k+9+19k+9+1 = 2*19k+19
10. n = 19k + 10 - тогда (n+3)+(n-4) = 19k+13+19k+6 = 2*19k+19
11. n = 19k + 11 - тогда n+(n-3) = 19k+11+19k+8 = 2*19k+19
12. n = 19k + 12 - тогда n+(n-5) = 19k+12+19k+7 = 2*19k+19
13. n = 19k + 13 - тогда (n-3)+(n-4) = 19k+10+19k+9 = 2*19k+19
14. n = 19k + 14 - тогда (n-4)+(n-5) = 19k+10+19k+9 = 2*19k+19
15. n = 19k + 15 - тогда (n+3)+(n+5) = 19k+18+19k+20 = 2*19k+38
16. n = 19k + 16 - тогда (n+1)+(n+5) = 19k+17+19k+21 = 2*19k+38
17. n = 19k + 17 - тогда (n-1)+(n+5) = 19k+16+19k+22 = 2*19k+38
18. n = 19k + 18 - тогда (n-3)+(n+5) = 19k+15+19k+23 = 2*19k+38
Во всех случаях результат сложения делится на 19.
Ось X -AB
Ось Y -AD
Ось Z- AA1
Координаты интересующих точек
В(1;0;0)
D1(0;1;1)
C(1;1;0)
B1(1;0;1)
C1(1;;1;1)
А1(0;0;1)
Направляющий вектор BD1 (-1;1;1)
Уравнение плоскости АСВ1
аx+by+cz=0 проходит через 0
Подставляем координаты точек
а+b=0
a+c=0
Пусть а= -1 тогда b=1 c=1
Уравнение
-x+y+z=0
Угол между BD1 и плоскостью
sin a = | -1*-1+1*1+1*1|/(√3*√3)= 1
a = 90 что и требовалось доказать
Уравнение плоскости АD1C1
a1x+b1y+c1z=0
b1+c1=0
a1+b1+c1=0
Пусть b1=1 тогда с1=-1 а=0
y-z=0
Уравнение плоскости А1D1C
a2x+b2y+c2z+d=0
c2+d=0
b2+c2+d=0
a2+b2+d=0
Пусть d=1 тогда с2= -1 b2=0 a2= -1
-x-z+1=0
cos b между плоскостями = 1/(√2*√2)=1/2
Угол b= 60 градусов