ответ: В). Выпадает небольшое количество осадков. Раз в степи много солнца, жаркое продолжительное лето, короткая зима, исключительно богатые перегноем почвы, значит почвы очень плодородны. Если отсутствуют осадки - не будет плодородия почвы, все засохнет. Если выпадают обильные осадки-то нарушится баланс почвы, будет очень много влаги в верхнем слое, а это значит , что корням растений не хватит воздуха и они не смогут нормально расти, а потом , отмерев, не дадут достаточное количество органики и тогда понизится плодородие почвы. А почвы в степи очень плодородны.
Требуется найти число больше 100, которое при делении на 2, на 3, на 5 дает в остатке 1.
Найдем наименьшее общее кратное чисел 2, 3, 5.
Так как это простые числа, т.е. они делятся только на 1 и на самих себя, то НОК (2,3,5) = 2*3*5 = 30.
Тогда все числа вида 30n делятся на 2, на 3 и на 5 без остатка, а все числа вида 30n + 1 при делении на 2, на 3, на 5 дадут в остатке 1, где n ∈ Z (n - целое число).
По условию число должно быть больше 100:
30n + 1 > 100; 30n > 99; n >3,3.
⇒ все числа вида 30n + 1 , n ∈ Z, n ≥ 4 при делении на 2, на 3, на 5 дадут в остатке 1 и будут больше 100.
Например, это могут быть числа: 121; 151.
Пошаговое объяснение:
Требуется найти число больше 100, которое при делении на 2, на 3, на 5 дает в остатке 1.
Найдем наименьшее общее кратное чисел 2, 3, 5.
Так как это простые числа, т.е. они делятся только на 1 и на самих себя, то НОК (2,3,5) = 2*3*5 = 30.
Тогда все числа вида 30n делятся на 2, на 3 и на 5 без остатка, а все числа вида 30n + 1 при делении на 2, на 3, на 5 дадут в остатке 1, где n ∈ Z (n - целое число).
По условию число должно быть больше 100:
30n + 1 > 100; 30n > 99; n >3,3.
⇒ все числа вида 30n + 1 , n ∈ Z, n ≥ 4 при делении на 2, на 3, на 5 дадут в остатке 1 и будут больше 100.
Например:
n = 4, 4 * 30 + 1 = 121
121 : 2 = 60 (ост. 1)
121 : 3 = 40 (ост. 1)
121 : 5 = 24 (ост. 1).
Или
n = 5, 30 * 5 + 1 = 151
151 : 2 = 75 (ост. 1 )
151 : 3 = 50 (ост. 1 )
151 : 5 = 30 (ост. 1 ).