В два магазина привезли стулья, причем во второй магазин в 2 раза больше, чем в первый. Когда в первом магазине было продано 7 стульев, а во втором 34 стула, то в первом магазине осталось в 3 раза больше стульев, чем во втором. Сколько стульев привезли в каждый магазин изначально? Решение: Пусть в 1 магазине было х стульев, тогда во втором - 2х стульев. После продажи стульев стало: 1 магазин : (х-7) 2 магазин: (2х-34). Зная, что в 1 магазине осталось в 3 раза больше стульев, чем во втором, составим уравнение: х-7 = 3*(2х-34) х-7=6х-102 102-7=6х-х 5х=95 х=95:5 х=19 (стульев) - было в 1 магазине. 2*19=38 (стульев)- было во 2 магазине. Проверим уравнение: 19-7=3*(2*19 -34) ; 12=3*4; 12=12
ответ: 19 стульев привезли в первый магазин, 38 стульев - во второй.
Сколько стульев привезли в каждый магазин изначально?
Решение:
Пусть в 1 магазине было х стульев, тогда во втором - 2х стульев.
После продажи стульев стало:
1 магазин : (х-7)
2 магазин: (2х-34).
Зная, что в 1 магазине осталось в 3 раза больше стульев, чем во втором, составим уравнение:
х-7 = 3*(2х-34)
х-7=6х-102
102-7=6х-х
5х=95
х=95:5
х=19 (стульев) - было в 1 магазине.
2*19=38 (стульев)- было во 2 магазине.
Проверим уравнение: 19-7=3*(2*19 -34) ; 12=3*4; 12=12
ответ: 19 стульев привезли в первый магазин, 38 стульев - во второй.
ответ:
y = - 3x + 2 и y = kx - 5 пересекаются, значит мы приравниваем эти функции:
-3x + 2 = kx - 5
kx + 3x = 7
x(k + 3) = 7
1. x₁ = 7, тогда k должно быть -2 (так как 7 · (-2 + 3) = 7 · 1 = 7)
2. k + 3 = 7 ⇒ k = 4, тогда x₂ должно быть 1 (так как 1 · (4 + 3) = 7)
отсюда:
1. y₁ = -3 · 7 + 2 = -19
2. y₂ = 4 · 1 - 5 = -1 ≠ y₁ следовательно, подставим x и k из первого заключения:
y₂ = -2 · 7 - 5 = -14 - 5 = -19 = y₁
получится точка a:
a(7; -19)
найдём, при каком k функция y = kx + 4 проходит с точкой a, подставив значения из точки a(x; y):
y = kx + 4
-19 = k · 7 + 4
7k = -23
k = -23/7
пошаговое объяснение: