При проверке выбранных случайным образом 45 ответов из 1800 ответов в задачнике 2 оказались неверными. Сколько примерно неверных ответов в этом учебнике?
скорость время расстояние авто х+48 км/ч был в пути всего меньше вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч
Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48 84(х+48)-84х=5,6х(х+48) 84х+48*84-84х=5,6 х^(2) +48*5.6x 5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8 7x^(2) + 336 x - 5040 = 0 x^(2) +48x-720=0 D=2304+4*720=5184=72^(2) x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)
Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
авто х+48 км/ч был в пути всего
меньше
вело х км/ч на 5 ч 36 мин 84 км
Составляем уравнение, учитывая, что велосипедист был в пути дольше автомобиля на 5 ч 36 мин = 5_36/60 = 5,6 ч
Приводим к общему знаменателю х(х+48) и отбрасываем его, заметив, что х≠0 и х≠-48
84(х+48)-84х=5,6х(х+48)
84х+48*84-84х=5,6 х^(2) +48*5.6x
5.6 x^(2) +48*5.6x - 48*84 = 0 |*10:8
7x^(2) + 336 x - 5040 = 0
x^(2) +48x-720=0
D=2304+4*720=5184=72^(2)
x(1)=(-48+72)/2 = 12 (км/ч) скорость велосипедиста
x(2)=(-48-72)/2<0 не подходит под условие задачи (скорость >0)
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр.
А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр).
так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем