В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Пупырка20001
Пупырка20001
13.08.2022 03:20 •  Математика

Применяя свойства сложения и умножения рациональных чисел, вычислите: - 18,6 * 8целых 4/7 + 1целая 3/7 * ( -18,6) 3б

Найдите значение числового выражения: - 5/8 ∙ 3,2 + (-1,8) : (-0,3) – (-4) 4б

Показать ответ
Ответ:
PaleMan2014
PaleMan2014
16.07.2021 13:22

Пошаговое объяснение:

а) Вычтем из числа 100...00(Допустим в нём n нулей) число вида 99...99, в котором n девяток , так как кол-во нолей чётно, то и кол-во девяток тоже чётно. Теперь докажем, что в числе вида 99...99(Допустим k девяток), в котором чётное кол-во девяток кратно 11, представим это число в виде суммы 99*10^(k-2)+99*10^(k-4)+...+99 = 99(10^(k-2)+10^(k-4)+...+1). Очевидно, что 99 кратно 11, а значит число вида 99...99(чётное число девяток) кратно 11.

Теперь вычтем из числа 10...00(n нулей) число 99...99(n девяток), очевидно, что разность равна 1, так как 99...99 кратно 11, то разность имеет такой же остаток при делении на 11, как и искомое число. А значит число вида 10...00 с чётным числом нулей при делении на 11 даёт остаток 1.

б) Представим число 10...00 с нечётным числом нулей в виде произведение 10...00(уже с чётным числом нулей) на 10. В пункте а было доказано, что число вида 10...00 с чётным числом нулей даёт остаток 1 при делении на 11. По свойству остатков при умножении числа на какое-то число, то и его остаток умножается на это же число. Из этого следует, что остаток 1 умножается на 10. А значит число вида 10...00 с нечётным числом нулей при делении на 11 даёт остаток 10.

0,0(0 оценок)
Ответ:
danifoxyforevep08iko
danifoxyforevep08iko
09.03.2023 10:21

Воспользуемся методом, позволяющим находить в разложении многочлена на скобки выражения вида x^2-a. Если a>0, это сразу дает два решения \pm \sqrt{a}, если a<0, действительные корни эта скобка не дает, но по любому степень многочлена будет понижена на 2. Кстати, решения вида  \pm \lambda я называю парными; название мне кажется оправданным. Легко доказать, что многочлен P(x) имеет парные корни \pm\lambda тогда и только тогда, когда они обращают в ноль по отдельности сумму четных степеней и сумму нечетных степеней. Это следует из того, что сумма четных степеней равна \frac {P(\lambda)+P(-\lambda)}{2}, а сумма нечетных равна \frac{P(\lambda)-P(-\lambda)}{2}.

Кстати, это утверждение будет работать и для нулевого корня, если считать, что ноль является парным корнем, в том случае, когда он является кратным.

1) Разбиваем на четные и нечетные степени: x^6+2x^4-5x^2-6=t^3+2t^2-5t-6=0\ \ (t=x^2);

-2x^5+2x^3+4x=-2x(t^2-t-2)=-2x(t-2)(t+1)=0;\ t_1=2; t_2=-1;

найденные t удовлетворяют и первому уравнению, поэтому оно принимает вид (t-2)(t+1)(t+3)=0, а поскольку исходное уравнение может быть получено в виде суммы этих двух, получаем

(t-2)(t+1)(t+3)-2x(t-2)(t+1)=0; (t-2)(t+1)(t-2x+3)=0; (x²-2)(x²+1)(x²-2x+3)=0.

ответ: \pm\sqrt{2}.

2)  t³+6t²+11t+6=0; -2x(t^2+3t+2)=-2x(t+1)(t+2)=0;

t³+6t²+11t+6=(t+1)(t+2)(t+3); все уравнение принимает вид

(t+1)(t+2)(t+3)-2x(t+1)(t+2)=(t+1)(t+2)(t-2x+3)=(x²+1)(x²+2)(x²-2x+3)=0.

ответ: решений нет.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота