Пример 2. Спортсмен, пробежав по кругу стадиона 20 раз, преодолел 11 км. Сколько километров он преодолел,
когда пробежал 12 кругов?
Решение. Пусть І км - расстояние пройденное за 12 кругов. Расстояние прямо пропорционально
зависит от количества пройденных спортсменом кругов.
20 кругов – 11 км
12 кругов – Скм
11
11. 12
-х — - х = 6, 6 (км).
20
12
20
ПОДСТАВЬ ТОЛЬКО СВОИ ЦИФРЫ
Итак, есть 7 видов блокнотов и 4 вида ручки, ручки мы трогать пока не будем, а найдем количество всех возможных пар блокнотов.
Блокноты обозначим цифрами от 1 до 7: 1 2 3 4 5 6 7
Пары: (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) (2.3) (2.4) (2.5) (2.6) (2.7) (3.3) (3.4) (3.5) (3.6) (3.7) (4.4) (4.5) (4.6) (4.7) (5.5) (5.6) (5.7) (6.6) (6.7) (7.7)
Итого получилось 26 пар блокнотов. С ручками такого делать не надо, так как ручку мы можем взять только одну и раз ручек всего 4, то умножаем количество пар на 4.
26 * 4 = 96
ответ:Покрасим клетки прямоугольника в черный и белый цвета так, как показано на рисунке. В черные клетки запишем число -2 , а в белые – число 1. Заметим, что сумма чисел в клетках, покрываемых любым уголком, неотрицательна, следовательно, если нам удалось покрыть прямоугольник в k слоев, удовлетворяющих условию, то сумма S чисел по всем клеткам, покрытым уголками, неотрицательна. Но если сумма всех чисел в прямоугольнике равна s , то S=ks=k(-2· 12+23· 1)=-k>0 . Получим противоречие.
Аналогично доказывается, что покрытия, удовлетворяющего условию задачи не существует, если прямоугольник имеет размеры 3×(2n+1) и 5×5. Прямоугольник 2×3 можно покрыть в один слой двумя уголками, прямоугольник 5×9 – в один слой пятнадцатью уголками, квадрат 2×2 – в три слоя четырьмя уголками. Комбинируя эти три покрытия, нетрудно доказать, что все остальные прямоугольники m×n ( m,n2 ) можно покрыть уголками, удовлетворяя условию.
Пошаговое объяснение:
Вот там написал