Пряма НС перпендикулярна до площини трикутника АВС, у якого АВ = 7 см, ВС = 8 см, < В = 120º . Знайди відстань від вершини В до точки Н, якщо відстань від вершини А до точки Н дорівнює √205 см.
1) делилось на 3 Чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 3 (4+9+7+*)=(20+*) должно быть кратно 3 вместо звездочки можно поставить 1; 4 или 7 ответ. 4971 4974 4977
2) делилось на 10 Чтобы число делилось на 10, необходимо и достаточно, чтобы оно оканчивалось на 0 ответ. 4970
3) было кратно 9 Чтобы число делилось на 9, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 9 (4+9+7+*)=(20+*) должно быть кратно 9 вместо звездочки можно поставить 7 ответ. 4977
Сторона АВ треугольника АВС лежит в плоскости альфа.Плоскость бетта параллельна плоскости альфа и пересекает стороны АС и ВС в точках А1 и В1 соответственно.Найти длину отрезка А1В1,если АВ=12 см,СВ1:В1В=2:3
Объяснение:
По условию СВ1:В1В=2:3 ⇒на СВ приходится 5 частей.
α║β , то линии пересечения плоскостей параллельны ⇒АВ║А₁В₁.
ΔАВС подобен ΔА₁В₁С по 2 углам : ∠АВС=∠А₁В₁С как соответственные СВ-секущая, ∠С-общий .Поэтому сходственные стороны пропорциональны \frac{AB}{A1B1} =\frac{BC}{B1C}
Чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 3
(4+9+7+*)=(20+*) должно быть кратно 3
вместо звездочки можно поставить 1; 4 или 7
ответ. 4971
4974
4977
2) делилось на 10
Чтобы число делилось на 10, необходимо и достаточно, чтобы оно оканчивалось на 0
ответ. 4970
3) было кратно 9
Чтобы число делилось на 9, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 9
(4+9+7+*)=(20+*) должно быть кратно 9
вместо звездочки можно поставить 7
ответ. 4977
Сторона АВ треугольника АВС лежит в плоскости альфа.Плоскость бетта параллельна плоскости альфа и пересекает стороны АС и ВС в точках А1 и В1 соответственно.Найти длину отрезка А1В1,если АВ=12 см,СВ1:В1В=2:3
Объяснение:
По условию СВ1:В1В=2:3 ⇒на СВ приходится 5 частей.
α║β , то линии пересечения плоскостей параллельны ⇒АВ║А₁В₁.
ΔАВС подобен ΔА₁В₁С по 2 углам : ∠АВС=∠А₁В₁С как соответственные СВ-секущая, ∠С-общий .Поэтому сходственные стороны пропорциональны \frac{AB}{A1B1} =\frac{BC}{B1C}
A1B1
AB
=
B1C
BC
или \frac{12}{A1B1} =\frac{5}{2}
A1B1
12
=
2
5
или А₁В₁= \frac{24}{5}
5
24
=4,8