Прямоугольный треугольник МВЕ ( М = 90°) находится в плоскости a. BE = 17 см, а ME = 8 см. К этой плоскости проведён перпендикуляр CB длиной 6 см. Вычисли расстояние от точки С до стороны треугольника MЕ. Расстояние равно ?
Однозначные натуральные числа - 1 2 3 4 5 6 7 8 9. 174:1=174 - без остатка 174:2-87 - без остатка 174:3=58 - без остатка 174:4=43(ост.2) - с остатком 174:5=32(ост.4) - с остатком 174:6=29 - без остатка 174:7=24(ост.6) - с остатком 174:8=21(ост.6) - с остатком 174:9=19(ост.3) - с остатком 236:1=236 - без остатка 236:2=118 - без остатка 236:3=78(ост.2) - с остатком 236:4=59 - без остатка 236:5=47(ост.1) - с остатком 236:6=39(ост.2) - с остатком 236:7=33(ост.5) - с остатком 236:8=29(ост.4) - с остатком 236:9=26(ост.2) - с остатком 385:1=385 - без остатка 385:2=192(ост.1) - с остатком 385:3=128(ост.1) - с остатком 385:4=96(ост.1) - с остатком 385:5=77 - без остатка 385:6=64(ост.1) - с остатком 385:7=55 - без остатка 385:8=48(ост.1) - с остатком 385:9=42(ост.7) - с остатком
Булос заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.
Вопрос Булоса: «Означает ли „da“ „да“, только если ты бог правды, а бог B — бог случая?» . Другой вариант вопроса: «Является ли чётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая? »
Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[3][4]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет» , заданный богу правды или богу лжи:
* Если я с тебя Q, ты ответишь «ja»?
результат будет «ja», если верный ответ на вопрос Q это «да» и «da», если верный ответ «нет» . Для доказательства этого можно рассмотреть восемь возможных вариантов:
* Предположим, что «ja» обозначает «да» , а «da» обозначает «нет» : o Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да» . o Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет» . o Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да» . o Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет» . * Предположим, что «ja» обозначает «нет» , а «da» обозначает «да» : o Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да» . o Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет» . o Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да» . o Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет» .
Используя этот факт можно задавать вопросы: [3]
* Спросим бога B: «Если я с у тебя „Бог А — бог случая? “, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом) , либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом) , либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.
* Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог правды? “, ты ответишь „ja“?». Поскольку он не бог случая, ответ «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи. * Спросим у этого же бога «Если я у тебя с Бог B — бог случая? “, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.
174:1=174 - без остатка
174:2-87 - без остатка
174:3=58 - без остатка
174:4=43(ост.2) - с остатком
174:5=32(ост.4) - с остатком
174:6=29 - без остатка
174:7=24(ост.6) - с остатком
174:8=21(ост.6) - с остатком
174:9=19(ост.3) - с остатком
236:1=236 - без остатка
236:2=118 - без остатка
236:3=78(ост.2) - с остатком
236:4=59 - без остатка
236:5=47(ост.1) - с остатком
236:6=39(ост.2) - с остатком
236:7=33(ост.5) - с остатком
236:8=29(ост.4) - с остатком
236:9=26(ост.2) - с остатком
385:1=385 - без остатка
385:2=192(ост.1) - с остатком
385:3=128(ост.1) - с остатком
385:4=96(ост.1) - с остатком
385:5=77 - без остатка
385:6=64(ост.1) - с остатком
385:7=55 - без остатка
385:8=48(ост.1) - с остатком
385:9=42(ост.7) - с остатком
Булос заявил, что первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.
Вопрос Булоса: «Означает ли „da“ „да“, только если ты бог правды, а бог B — бог случая?» . Другой вариант вопроса: «Является ли чётным числом количество правдивых утверждений в следующем списке: ты — бог лжи, „ja“ обозначает „да“, B — бог случая? »
Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[3][4]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет» , заданный богу правды или богу лжи:
* Если я с тебя Q, ты ответишь «ja»?
результат будет «ja», если верный ответ на вопрос Q это «да» и «da», если верный ответ «нет» . Для доказательства этого можно рассмотреть восемь возможных вариантов:
* Предположим, что «ja» обозначает «да» , а «da» обозначает «нет» :
o Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да» .
o Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет» .
o Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да» .
o Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет» .
* Предположим, что «ja» обозначает «нет» , а «da» обозначает «да» :
o Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да» .
o Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет» .
o Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да» .
o Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет» .
Используя этот факт можно задавать вопросы: [3]
* Спросим бога B: «Если я с у тебя „Бог А — бог случая? “, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом) , либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом) , либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.
* Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты бог правды? “, ты ответишь „ja“?». Поскольку он не бог случая, ответ «ja» обозначает, что он бог правды, а ответ «da» обозначает, что он бог лжи.
* Спросим у этого же бога «Если я у тебя с Бог B — бог случая? “, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.
Оставшийся бог определяется методом исключения.