Радиолокационная станция ведет наблюдение за шестью объектами в течение некоторого времени. Контакт с каждым из них может быть потерян с вероятностью 0,2. Найти вероятность того, что хотя бы с тремя объектами контакт будет поддерживаться в течение всего времени.
Т.е., Пете осталось решить 5 частей задач (в 5 раз больше), а Коле 1 часть задач.
1) 159-123=36 (задач) - разница между решенными Колей и Петей задачами.
2) 5-1=4 (части) - осталось решить Пете, чтобы догнать Колю.
3) 36:4=9 (задач) - осталось решить Коле, а также количество задач в одной части.
4) 159+9=168 (задач) - всего задали на лето каждому из мальчиков.
Из 168 задач Коля решил 159 задач (осталось решить 9 заданий)
Из 168 задач Петя решил 123 задачи, осталось решить 9*5=45 заданий.
Пошаговое объяснение:
Пусть R — радиус шара.
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.