ответ:AB=16см
Пошаговое объяснение:
ΔBCD:
∠C=90°-∠B=90°-45°=45°(Сумма двух острых углов прямоугольного треугольника равна 90°).
Значит,треугольник не только прямоугольный, но и равнобедренный.
CD=BD(Так как стороны ранобедренного треугольника равны).
ΔBAC:
∠A=90°-∠B=90°-45°=45°(Сумма двух острых углов прямоугольного треугольника равна 90°).
AD=BD=8см(В равнобедренном треугольнике медиана, опущенная на основание, является высотой и биссектрисой. )
AB=AD+BD=8+8=16см
все решение на фото︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋
ответ:AB=16см
Пошаговое объяснение:
ΔBCD:
∠C=90°-∠B=90°-45°=45°(Сумма двух острых углов прямоугольного треугольника равна 90°).
Значит,треугольник не только прямоугольный, но и равнобедренный.
CD=BD(Так как стороны ранобедренного треугольника равны).
ΔBAC:
∠A=90°-∠B=90°-45°=45°(Сумма двух острых углов прямоугольного треугольника равна 90°).
Значит,треугольник не только прямоугольный, но и равнобедренный.
AD=BD=8см(В равнобедренном треугольнике медиана, опущенная на основание, является высотой и биссектрисой. )
AB=AD+BD=8+8=16см
все решение на фото︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋ ︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋︋