Нарисуй, и станет очевидно, что площадь PQT будет равна 1/8 площади прямоугольника... 1) PQRS-ромб, заодно показывается равность треугольничков у вершин прямоугольника (как прямоугольные с равными катетами, по половине стороны прямоугольника) 2) а в ромбе такой треугольник равен 4 себе подобным (прямоугольным с равными половине диагонали ромба сторонами) (ромб - параллелограмм⇒диагонали точкой пересечения делятся попалам)также в этом пункте можно отметить, что диагонали ромба равны сторонам прямоугольника 3) и равенство этих групп 3/угольничков, можно провести по любому признаку равенства треугольников (по трем сторонам, или по гипотенузе и катету, или по двум катетам)
Для начала нужно построить координатную плоскость ху. Вершины имеют определенные координаты, которые надо отметить на построенной плоскости (я брала 1 клетку за 1 см). По рисунку видно, что полученная фигура похожа на 2 ромба. Для того, чтобы посчитать площадь этой фигуры мы используем формулу площади ромба S = 1/2 d1d2, где d1 и d2 – диагонали ромба.
Эти диагонали мы можем узнать из получившегося рисунка (просто измерить линейкой расстояние).
1) PQRS-ромб, заодно показывается равность треугольничков у вершин прямоугольника (как прямоугольные с равными катетами, по половине стороны прямоугольника)
2) а в ромбе такой треугольник равен 4 себе подобным (прямоугольным с равными половине диагонали ромба сторонами) (ромб - параллелограмм⇒диагонали точкой пересечения делятся попалам)также в этом пункте можно отметить, что диагонали ромба равны сторонам прямоугольника
3) и равенство этих групп 3/угольничков, можно провести по любому признаку равенства треугольников (по трем сторонам, или по гипотенузе и катету, или по двум катетам)
Для начала нужно построить координатную плоскость ху.
Вершины имеют определенные координаты, которые надо отметить на построенной плоскости (я брала 1 клетку за 1 см).
По рисунку видно, что полученная фигура похожа на 2 ромба.
Для того, чтобы посчитать площадь этой фигуры мы используем формулу площади ромба S = 1/2 d1d2, где d1 и d2 – диагонали ромба.
Эти диагонали мы можем узнать из получившегося рисунка (просто измерить линейкой расстояние).
Отметим точку L.
Рассмотрим ромб BAFL.
BF=12см, LA=6см.
Следовательно S BAFL = 1/2*(12*6) = 36см.
Аналогично с ромбом CLED
LD=8 см, CE= 4 см.
S CLED= 1/2*(8*4) = 16 см.