Расстояние между двумя пристанями равно 71,4 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1,7 ч. лодки встретились. Скорость течения реки равна 2 км/ч.
Скорость лодки в стоячей воде равна
... км/ч.
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
... км.
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
... км.
А 71,4 км В
> (х + 2) t - 1,7 ч (х - 2) км/ч <
Пусть х км/ч - собственная скорость лодки, тогда (х + 2) км/ч - скорость лодки по течению реки, (х - 2) км/ч - скорость лодки против течения реки; 71,4 : 1,7 = 714 : 17 = 42 км/ч - скорость сближения. Уравнение:
(х + 2) + (х - 2) = 42
2х = 42
х = 42 : 2
х = 21 (км/ч) - собственная скорость лодки
(21 + 2) · 1,7 = 23 · 1,7 = 39,1 (км) - пройдёт лодка по течению реки
(21 - 2) · 1,7 = 19 · 1,7 = 32,3 (км) - пройдёт лодка против течения
ответ: 21 км/ч; 39,1 км; 32,3 км.