Расстояние от числа −74 до нуля равно Расстояние от числа −9,8 до нуля равно Расстояние от числа 64 до нуля равно Расстояние от числа −15,3 до нуля равно Если t= 19,9, то значение выражения |t|=
Первыми переправляются дети. Сын возвращается к маме-папе. Папа едет на берег к дочери, потом дочь едет за братом и возвращается с ним к папе. Сын едет к маме, отдает ей лодку, чтобы она переплыла к папе и дочери. После того, как мама переправилась, дочь садится в лодку и едет к брату, подбирает его, и вместе они едут к родителям. Дочь остается с родителями, а сын едет к рыбаку, отдает ему лодку. Рыбак едет к родителям и высаживается. Дочь садится и едет за братом, привозит его с собой обратно (наконец-то вся семья снова вместе), они отдают лодку рыбаку. Лодка пересекла реку 13 раз.
Y=x²+2x-3; 1) Находим координаты вершины параболы: x0=-b/2a=-2/2=-1, y0=(-1)²+2*(-1)-3=-4. (-1;-4). 2) Проводим ось симметрии х=-1. 3) Находим точки пересечения параболы с координатными осями: OX (y=0): x²+2x-3=0; D=4+12=16; x1=(-2-4)/2=-6/2=-3; x2=(-2+4)/2=2/2=1. (-3;0), (1;0). OY (x=0): y=0²+2*0-3=-3. (0;-3). 4) Находим координаты точки, симметричной точке (0;-3) относительно оси симметрии прямой х=-1: (-2;-3). 5) По полученным точкам строим график, ветви параболы направлены вверх, так как а=1>0. График параболы может иметь с прямой параллельной оси абсцисс (ОХ) ни одной, одну или две точки пересечения, значит, наибольшее число общих точек - 2.
Сын возвращается к маме-папе.
Папа едет на берег к дочери, потом дочь едет за братом и возвращается с ним к папе.
Сын едет к маме, отдает ей лодку, чтобы она переплыла к папе и дочери.
После того, как мама переправилась, дочь садится в лодку и едет к брату, подбирает его, и вместе они едут к родителям.
Дочь остается с родителями, а сын едет к рыбаку, отдает ему лодку.
Рыбак едет к родителям и высаживается.
Дочь садится и едет за братом, привозит его с собой обратно (наконец-то вся семья снова вместе), они отдают лодку рыбаку.
Лодка пересекла реку 13 раз.
1) Находим координаты вершины параболы:
x0=-b/2a=-2/2=-1,
y0=(-1)²+2*(-1)-3=-4.
(-1;-4).
2) Проводим ось симметрии х=-1.
3) Находим точки пересечения параболы с координатными осями:
OX (y=0): x²+2x-3=0;
D=4+12=16;
x1=(-2-4)/2=-6/2=-3;
x2=(-2+4)/2=2/2=1.
(-3;0), (1;0).
OY (x=0): y=0²+2*0-3=-3.
(0;-3).
4) Находим координаты точки, симметричной точке (0;-3) относительно оси симметрии прямой х=-1: (-2;-3).
5) По полученным точкам строим график, ветви параболы направлены вверх, так как а=1>0.
График параболы может иметь с прямой параллельной оси абсцисс (ОХ) ни одной, одну или две точки пересечения, значит, наибольшее число общих точек - 2.