Решение задач Составь эти множества, Элементы множества - числа от 1 до 20, кратные четырём. Элементы множества В - чётные числа от 1 до 20, } } BU Дополни истинное высказывание Множество Является подмножеством множества
Область определения логарифма - это положительные значения х, то есть нужно решить неравенство (6х+х^2) больше нуля (неравенство 1) x(6+x) больше нуля решаем методом интервалов, находим нули функции, это точки 0 и (-6) отмечаем их на коорд прямой получаем три интервала 1) от минус беск до (-6) 2) от (-6) до 0 3) от 0 до плюс беск выбираем из каждого промежутка любое значение, подставляем в (неравенство 1) получаем, что обл опред этой функции явл промежуток (от минус беск до (-6)) знак объединения (от 0 до плюс беск)
Треугольники будут подобны по 2-му признаку(Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны), а из свойств подобия треугольников, получается, что отношение периметров и длин биссектрис , медиан , высот и серединных перпендикуляров равно коэффициенту подобия. А коэффициент подобия, в данном случае, равен 2(свойство средней линии). значит периметр треугольника ВMN равен половине периметра треугольника АВС: 4 корня из 7: 2= 2 корня из 7
(6х+х^2) больше нуля (неравенство 1)
x(6+x) больше нуля
решаем методом интервалов, находим нули функции, это точки 0 и (-6)
отмечаем их на коорд прямой
получаем три интервала
1) от минус беск до (-6)
2) от (-6) до 0
3) от 0 до плюс беск
выбираем из каждого промежутка любое значение, подставляем в (неравенство 1)
получаем, что обл опред этой функции явл промежуток (от минус беск до (-6)) знак объединения (от 0 до плюс беск)
А коэффициент подобия, в данном случае, равен 2(свойство средней линии).
значит периметр треугольника ВMN равен половине периметра треугольника АВС: 4 корня из 7: 2= 2 корня из 7