В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Ehsusfmivwxjswbj
Ehsusfmivwxjswbj
10.04.2021 09:51 •  Математика

Реши уравнение подобрать значение икс третий класс школа россии

Показать ответ
Ответ:
ShadowFlcus
ShadowFlcus
10.02.2023 14:35

1 см

Пошаговое объяснение:

1) Так как треугольник АВС является прямоугольным, то это означает, что его прямой угол С опирается на диаметр, который в данном треугольнике является гипотенузой.

Таким образом, гипотенуза АВ треугольника АВС равна:

АВ = 4 * 2 = 8 см.

2) Выразим периметр треугольника АВС через отрезки, проведённые из вершин А и В к окружности, вписанной в треугольник.

Так как касательные к окружности, проведённые из одной точки, равны, то катет АВ будет будет равен расстоянию от вершинs А треугольника до точки касания с окружностью (обозначим это расстояние х) + радиус вписанной окружности r:

АВ = х + r.

Аналогично:

катет ВС = у + r,

где у - расстояние от вершины В треугольника до точки касания с вписанной окружностью;

соответственно гипотенуза

АВ = х+у = 8 см.

3) Таким образом, периметр треугольника АВС, выраженный через радиус вписанной в него окружности, равен:

Р = (х+r) + (y+r) + (х+у) = 2(х+у) + 2r = 2*8 + 2r = 16+ 2r.

4) С другой стороны, радиус вписанной в прямоугольный треугольник окружности равен отношению его площади к полупериметру:

r = S/p.

Зная периметр Р треугольника АВС, находим его полупериметр р:

р = Р :2 = (16+2r) : 2 = 8 + r.

Подставляем это значение в формулу радиуса окружности, вписанной в прямоугольный треугольник r = S/p, и по теореме Виета находим r, отбросив отрицательное значение второго корня (-9), так как радиус не может быть отрицательным:

r = S/p = 9 / (8+r),

откуда

r² + 8r - 9 = 0

r₁,₂ = -4 ± √(16+9) = -4 ± 5,

r = 1 см

ответ: радиус вписанной окружности r = 1 см.

0,0(0 оценок)
Ответ:
Adilka11
Adilka11
31.03.2020 06:05
@
лист загнули справа
@

Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».

Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).

Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).

Будем согнутый лист на любой стадии называть «фигурой».
Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):

1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);

2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)

3) [один] «однослойный остаток».

При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «углового квадратика». При этом важно понимать, что толщина другой «краевой полосы» не увеличивается.

Когда после всех загибаний получилась «фигура» в виде конечного квадрата 4 на 4 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 3 на 3 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».

Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 3 (трём) сантиметрам.

Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 4 см, то значит, в совокупности, с каждой стороны было загнуто по 6 сантиметра листа. А именно: 6 сантиметров справа и 6 сантиметров сверху. Значит в «краевых полосах» сосредоточено 6 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 7 слоёв листа.

Площадь «краевой полосы» равна трём квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 7 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 3*7*2 = 42 «ячейки».

Площадь «однослойного остатка», размером 3x3 см – равна 9 квадратным сантиметрам и содержит в себе 9 «ячеек».

Всего было 100 «ячеек». Из них 42 + 9 = 51 «ячейку» мы уже нашли. Остальные 49 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 49 слоёв исходного листа.

Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 49 дырок.

Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографии с 49-тью дырками.

О т в е т :  49 дырок.

Уквадратного листа бумаги 10х10 сначала загнули справа полоску шириной 1, потом сверху полоску высот
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота