В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
dmitryveris
dmitryveris
06.01.2021 07:55 •  Математика

решить интегралл подробно объяснить, мне нужно понять, а не решить решить интегралл подробно объяснить, мне нужно понять, а не решить. ">

Показать ответ
Ответ:
GabriellaKiM
GabriellaKiM
14.09.2020 23:17

[a,b]int(√(x^2+1) *dx ) =

= b*√(b^2+1)/2 +  ln(b+√(b^2+1) )/2 -  a*√(a^2+1)/2 -  ln(a+√(a^2+1) )/2

Пошаговое объяснение:

[a,b]int(√(x^2+1) *dx )

Замена :

x= ( t- t^-1)/2    

Примечание :

(t-t^-1)/2  -монотонно возрастающая функция  

dx = dt/2 *( 1 +t^(-2 ) )

x^2+1 =  (t^2 -2 +t^-2)/4 +1 =  (t^2+2+t^-2)/4 = (t+t^-1)^2 /4

[a,b]int(√(x^2+1) *dx )  =  1/4 * [a,b]int ( dt*(t+t^-1) *(1+t^-2) )  =

= 1/4* [a,b]int ( dt* ( t +2* t^-1  + t^-3 )  = 1/4 [a,b] ( t^2/2 +2*ln(t)  - t^-2/2 ) =

= 1/2* [a,b] (   ( (t+t^-1)/2 )  * ( (t-t^-1)/2 ) +ln(t) )

Поскольку :

(t- t^-1)/2 =x

(t+t^-1) /2 =√(x^2+1)

t =  x+ √(x^2+1)

[a,b]int(√(x^2+1) *dx ) =  [a,b] (   x*√(x^2+1)/2  +  ln(x+√(x^2+1) )/2 ) =

=  b*√(b^2+1)/2 +  ln(b+√(b^2+1) )/2 -  a*√(a^2+1)/2 -  ln(a+√(a^2+1) )/2

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота