На весах есть левая и правая чаши, предположим на левую ставим наши гири, а на праву то что взвешиваем. При взвешивании на подобных весах, с гирь, вес считается определенным если левая и правая чаши находятся в равновесии. То есть если с лева и справа лежит одинаковый по весу груз. 1) Взвешиваем 3 кг. а) Вариант 1. На левую чашу весов кладем гири - 1 кг, 2 кг. На правую чашу - кладем то что взвешиваем. б) Вариант 2. На левую чашу - гирю 5 кг. На правую - гирю 2 кг и взвешиваемый груз. 2)Взвешиваем 7 кг. На левую чашку - гири 2 кг, 5 кг. На правую - груз. 3) Взвешиваем 4 кг. На левую кладем - гирю 5 кг. На правую - гирю 1 кг и взвешиваемый груз, по условию 4 кг.
Пошаговое объяснение:
На весах есть левая и правая чаши, предположим на левую ставим наши гири, а на праву то что взвешиваем. При взвешивании на подобных весах, с гирь, вес считается определенным если левая и правая чаши находятся в равновесии. То есть если с лева и справа лежит одинаковый по весу груз. 1) Взвешиваем 3 кг. а) Вариант 1. На левую чашу весов кладем гири - 1 кг, 2 кг. На правую чашу - кладем то что взвешиваем. б) Вариант 2. На левую чашу - гирю 5 кг. На правую - гирю 2 кг и взвешиваемый груз. 2)Взвешиваем 7 кг. На левую чашку - гири 2 кг, 5 кг. На правую - груз. 3) Взвешиваем 4 кг. На левую кладем - гирю 5 кг. На правую - гирю 1 кг и взвешиваемый груз, по условию 4 кг.Пусть Ф - сумма монет у Фомы.
Е - сумма монет у Ерёмы;
Ю - сумма монет у Юлия.
х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну.
Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну:
70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну:
Ф - 40 = Ю
{ Ф - х = Е + х
{ 70 + Е = Ю
{ Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными:
{ Ф - 2х = Е (1)
{ 70 + Е = Ю (2)
{ Ф - 40 = Ю (3)
Сложим первые два уравнения:
Ф - 2х + 70 + Е = Е + Ю
Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим :
Ф - 40 - (Ф - 2х + 70) = Ю - Ю
Ф - 40 - Ф + 2х - 70 = 0
2х - 110 = 0
2х = 110
х = 110 : 2
х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
ответ: 55 монет.
Проверка:
{ Ф - 55 = Е + 55
{ 70 + Е = Ю
{ Ф - 40 = Ю
{ Ф = Е + 110
{ Е = Ю - 70 подставим в первое уравнение.
{ Ф = Ю + 40 подставим в первое уравнение.
Ю + 40 = Ю - 70 + 110
40 + 70 = 110
110 = 110
Пошаговое объяснение: