В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
nensy21
nensy21
25.05.2020 23:04 •  Математика

решить плачу с решением обязательно


решить плачу с решением обязательно

Показать ответ
Ответ:
Girjd
Girjd
31.01.2022 10:32
Задачи решаются по классической формуле вероятности:
P = m/n, где
m — число благоприятствующих исходов
n — число всевозможных исходов
n = 6·6 = 36. А вот благоприятствующие исходы m для каждого условия нужно считать

а) Событие A = {сумма выпавших очков равна 7}

Тогда: P = m/n = 6/36 = 1/6

б) Событие C = {сумма выпавших очков равна 8, а разность 4}

Тогда: P = m/n = 2/36 = 1/18

в) Событие D = {сумма выпавших очков равна 8, если известно, что их разность равна 4}
Событие A = {сумма выпавших очков равна 8}
Событие B = {разность выпавших очков равна 4}
По формуле условной вероятности: P(A|B) = P(A·B) / P(B), то есть:

P(A·B) = {сумма выпавших очков равна 8 И их разность равна
Тогда: P(D) = P(A·B) / P(B) = (1/18)·9 = 1/2

г) Событие E = {сумма выпавших очков равна 5, а произведение 4}

Тогда: P(E) = 2/36 = 1/18
0,0(0 оценок)
Ответ:
asylkhanova05
asylkhanova05
01.08.2021 13:09
Производная функции f(x)=4x^3-6x^2 равна:
f '(x) = 12x² - 12x.

Исследовать функцию f (x) = 4x³–6x² и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция f (x) = 4x³–6x² непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.

 f(–x) = 4(–x)³–6(–x)² = –(4x³+6x²) ≠ –f(x),

f(–x) = 4(–x)³3–6(–x)² = –(4x³+6x²) ≠ –f(x)

Функция не является ни четной, ни нечетной. Функция непериодическая.

4. Точки пересечения с осями координат:

Ox: y=0, 4x³–6x²=0, 2x²(2x–3)=0 ⇒ x=0, x=3/2. Значит (0;3/2),  - точки пересечения с осью Ox.

 Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y'=0 ⇒ 12x²–12x =0 ⇒ 12x(x–1) = 0 ⇒ x = 0, x = 1 - критические точки.

Если производная положительна - функция возрастает, если производная отрицательна - функция убывает:

отрезок  -∞ < x < 0   функция возрастает,

отрезок 0 < x < 3/2   функция убывает,

отрезок 3/2 < X < ∞   функция возрастает.

7*. Вычисление второй производной: у =4x³–6x², 

f '(x) = 12x² - 12x. f ''(x) = 24x - 12.

y''=0, 24x–12= 0, x = 12/24 = 1/2.

 8*. Промежутки выпуклости и точки перегиба:

отрезок  -∞ < x < 1/2  график функции выпуклый вверх,

точка перегиба х = 1/2,

отрезок 1/2< x < ∞  график функции выпуклый вниз.

9. Найдем значение функции в дополнительной точке: f(1/2) = 4*(1/2)³– 6(1/2)² = 4/8 -6/4 = (4-12) / 8 = -8/8 =  –1.

10. Искомый график функции в приложении.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота