Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Скорость сближения велосипедистов равна:
15-10=5 (км/час)
Время сближения:
2 : 5=0,4 (час)
Время движения (t) у обоих велосипедистов одинаковое.
Первый велосипедист проедет расстояние:
S1=15*t
Обозначим количество кругов у первого велосипедиста за (n1)
При количестве кругов n1, расстояние пройденное первым велосипедистом составит:
S1=5*0,4*n1=2n1
Приравняем оба выражения S1
15t=2n1
Второй велосипедист проедет расстояние равное:
S2=10*t
Обозначим количество кругов у второго велосипедиста за (n2)
При количестве кругов n2, расстояние пройденное вторым велосипедистом составит:
S2=5*0,4*n2=2n2
Приравняем оба выражения S2
10t=2n2
Получилось два уравнения:
15t=2n1
10t=2n2
Разделим первое уравнение на второе, получим:
15t/10t=2n1/2n2
15/10=n1/n2
Делаем вывод, что минимальное количество кругов до встречи равно:
n1=15
n2=10
Из первого уравнения 15t=2n1 найдём значение (t)
t=2n1/15 подставим в это выражение n1=15
t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33