Пусть в крайних вагонах едет и пассажиров (в 1-ом вагоне а в последнем пятом: – соответственно).
Пусть в околокрайних вагонах едет и пассажиров (во 2-ом вагоне а в предпоследнем четвёртом: – соответственно).
Пусть в центральном тртьем вагоне едет пассажиров.
Итак число пассажиров в цепочке вагонов от начала к концу состава выглядит как:
Число соседей у любого пассажира первого вагона равно сумме числа пассажиров в первом и втором вагонах, за исключением самого этого пассажира, тогда:
Аналогично, число соседей у любого пассажира последнего вагона равно сумме числа пассажиров в последем и предпослднем вагонах, за исключением самого этого пассажира, тогда:
Число соседей у любого пассажира второго вагона равно сумме числа пассажиров в первом, втором и третьем вагонах, за исключением самого этого пассажира, тогда:
Аналогично, число соседей у любого пассажира предпоследнего четвёртого вагона равно сумме числа пассажиров в трёх последих вагонах, за исключением самого этого пассажира, тогда:
Заметим, что: поскольку
А значит: а
Ааналогично: а
Т.е. и
А это означает, что сумма числа всех пассажиров:
Было бы опрометчиво сразу же говорить, что пассажиров именно двенадцать. Ведь правильный ответ может быть и таким: «рассадить пассажиров заданным образом невозможно». Поэтому нужно представить хотя бы один вариант рассадки посажиров, удовлетворяющий условию.
На листке бумаги с карандашом в руках, легко найти, например, такой вариант:
[ o ] [ o o o ] [ o o o o ] [ o ] [ o o o ] – здесь символами «о» обозначены пассажиры в соответствующем вагоне.
У пассажира первого вагона трое соседей. У пассажиров второго вагона по 7 соседей. У пассажиров третьего вагона по 7 соседей. У пассажирв четвёртого вагона по 7 соседей. У пассажиров пятого вагона по трое соседей.
Задание: Начертите треугольник PHO. Постройте точку М, в которую отобразится точка Р при параллельном переносе на вектор НО
План: 1. Построили треугольник РНО 2. Достроили треугольник РНО до параллелограмма РНОМ, причем стороны РН и НО являются его смежными сторонами, а РО диагональю. 3. Точка М - отображение точки Р при параллельном переносе на вектор НО
Объяснения: Зная два главных свойства параллелограмма: стороны попарно параллельны (из определения) и противоположные стороны равны, мы понимаем что О - отображение точки Н при параллельном переносе на вектор НО и М - отображение точки Р на тот же вектор, то есть
Дополнение: Для построения параллелограмма имея треугольник, две стороны которого должны быть смежными нужно измерить циркулем растояние от точки Р до точки Н (в данном задании) и из точки О, тем же раствором циркуля провести дугу на примерное расположение 4-й точки параллелограмма. Далее измерив ОН тем же раствором циркуля провести из точки Р проводим дугу там, где наша первая дуга. Точка пересечения дуг и есть точка параллелограмма. Это работает потому что мы воспользовались свойством параллелограмма, что его противоположные стороны равны.
(в 1-ом вагоне а в последнем пятом: – соответственно).
Пусть в околокрайних вагонах едет и пассажиров (во 2-ом вагоне а в предпоследнем четвёртом: – соответственно).
Пусть в центральном тртьем вагоне едет пассажиров.
Итак число пассажиров в цепочке вагонов от начала к концу состава выглядит как:
Число соседей у любого пассажира первого вагона равно сумме числа пассажиров в первом и втором вагонах, за исключением самого этого пассажира, тогда:
Аналогично, число соседей у любого пассажира последнего вагона равно сумме числа пассажиров в последем и предпослднем вагонах, за исключением самого этого пассажира, тогда:
Число соседей у любого пассажира второго вагона равно сумме числа пассажиров в первом, втором и третьем вагонах, за исключением самого этого пассажира, тогда:
Аналогично, число соседей у любого пассажира предпоследнего четвёртого вагона равно сумме числа пассажиров в трёх последих вагонах, за исключением самого этого пассажира, тогда:
Заметим, что:
поскольку
А значит: а
Ааналогично: а
Т.е. и
А это означает, что сумма числа всех пассажиров:
Было бы опрометчиво сразу же говорить, что пассажиров именно двенадцать. Ведь правильный ответ может быть и таким: «рассадить пассажиров заданным образом невозможно». Поэтому нужно представить хотя бы один вариант рассадки посажиров, удовлетворяющий условию.
На листке бумаги с карандашом в руках,
легко найти, например, такой вариант:
[ o ] [ o o o ] [ o o o o ] [ o ] [ o o o ] – здесь символами «о» обозначены пассажиры в соответствующем вагоне.
У пассажира первого вагона трое соседей.
У пассажиров второго вагона по 7 соседей.
У пассажиров третьего вагона по 7 соседей.
У пассажирв четвёртого вагона по 7 соседей.
У пассажиров пятого вагона по трое соседей.
И всего их 12.
О т в е т : 12.
План:
1. Построили треугольник РНО
2. Достроили треугольник РНО до параллелограмма РНОМ, причем стороны РН и НО являются его смежными сторонами, а РО диагональю.
3. Точка М - отображение точки Р при параллельном переносе на вектор НО
Объяснения: Зная два главных свойства параллелограмма: стороны попарно параллельны (из определения) и противоположные стороны равны, мы понимаем что О - отображение точки Н при параллельном переносе на вектор НО и М - отображение точки Р на тот же вектор, то есть
Дополнение: Для построения параллелограмма имея треугольник, две стороны которого должны быть смежными нужно измерить циркулем растояние от точки Р до точки Н (в данном задании) и из точки О, тем же раствором циркуля провести дугу на примерное расположение 4-й точки параллелограмма. Далее измерив ОН тем же раствором циркуля провести из точки Р проводим дугу там, где наша первая дуга. Точка пересечения дуг и есть точка параллелограмма. Это работает потому что мы воспользовались свойством параллелограмма, что его противоположные стороны равны.
[Рисунок в приложении]