решить задачу по статистике Предприятие введено в действие с 8 сентября. Численность работников предприятия в сентябре по списку составляла: 8 – 1000 чел., 9- 1010 чел.; с 12 по 16 – 1020 человек; с 19 по 23- 1050 человек; с 26 по 30 – 1055 человек. Выходные: 10, 11, 17, 18, 24, 25. Определите среднесписочное число рабочих за сентябрь
Пятьсот тридцать одна тысяча двадцать, два миллиона сто сорок тысяч пятьсот тридцать, девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь, два миллиона восемьсот пятьдесят тысяч три, семьдесят три миллиона триста две тысячи сто, один миллиард двести тридцать два миллиона шестьсот семьдесят одна тысяча семьдесят четыре, девяносто три миллиона четыреста пять тысяч два
Пошаговое объяснение:
Пятьсот тридцать одна тысяча двадцать, два миллиона сто сорок тысяч пятьсот тридцать, девятьсот девять миллиардов четыреста сорок четыре миллиона сто двадцать девять тысяч восемь, два миллиона восемьсот пятьдесят тысяч три, семьдесят три миллиона триста две тысячи сто, один миллиард двести тридцать два миллиона шестьсот семьдесят одна тысяча семьдесят четыре, девяносто три миллиона четыреста пять тысяч два
Пошаговое объяснение:
Доказательство первого признака подобия через данные треугольники: Рассмотрим треугольники ABC и А1В1С1, у которых А1В1 = 2AB, А1С1 = 2АС и ∠А = ∠А1.
Чтобы доказать подобие данных треугольников, требуется доказать, что А1С1 = 2AC, так как подобие треугольников определяется по трем пропорциональным сторонам. Найдем стороны AC и А1С1 по теореме косинусов:
AC2 = AB2 + BC2 – 2 · AB · BC · cos А
А1С12 =А1В12 + В1С12 – 2 · А1В1 · В1С1 · cos А1
Так как ∠А1 = ∠А и AB = 2А1В1, BC = 2В1С1, то мы можем выразить квадрат стороны АС через угол и стороны треугольника ABC:
А1С1^2 = (2AB)^2 + (2BC)^2 – 2 · 2AB · 2BC · cos А
Вынесем 2 за скобку:
А1С1^2= 2(AB^2 + BC^2 – 2 · AB · BC · cos B)
Выражение в скобках равно ранее выраженному через теорему косинусов квадрату стороны AC. Поэтому можно записать так:
А1С1^2 = 2AC^2
Отсюда получаем, что А1С1 = 2AC, что и требовалось доказать. Таким образом, если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами каждого треугольника равны, то оказываются соответственно пропорциональными и третьи их стороны, а, следовательно, такие треугольника подобны.