В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
artemsuraaye
artemsuraaye
22.12.2021 10:40 •  Математика

Решите дифференциальное уравнение: y''+y'=x

Показать ответ
Ответ:
dashutkazel1221
dashutkazel1221
03.07.2020 14:49

Найдем сначала общее решение соответствующего однородного уравнения:

y''+y'=0

Пусть y=e^{kx}, получим характеристическое уравнение:

k^2+k=0~~\Rightarrow~~ k(k+1)=0~~~\Rightarrow~~~ k_1=0;~~~k_2=-1

y^*=C_1+C_2e^{-x}

Рассмотрим функцию f(x)=x=xe^{0x}

Здесь \alpha =0;~~ P_n(x)=x~~~\Rightarrow~~~ n=1

Сравнивая α с корнями характеристического уравнения и, принимая во внимания, что n=1, частное решение будем искать в виде:

\overline{y}=x(Ax+B)=Ax^2+Bx\\ y'=2Ax+B\\ y''=2A

Подставим в исходное дифференциальное уравнение:

2A+2Ax+B=x

Приравниваем коэффициенты при степенях х:

\displaystyle \left \{ {{2A+B=0} \atop {2A=1}} \right. ~~~~\Rightarrow~~~~\left \{ {{B=-1} \atop {A=0.5}} \right.

Частное решение: \overline{y}=\dfrac{x^2}{2}-x

Общее решение линейного неоднородного дифференциального уравнения:

y=y^*+\overline{y}=C_1+C_2e^{-x}+\dfrac{x^2}{2}-x

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота