Если только так. №1 а) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 34 см Найдем ВС по т. Пифагора. BC = √(BD² + 34²) (см)
б) Рассмотрим ΔBCD. ∠BDC = 90°, т.к. CD⊥BD. CD = AB = 8,5 дм Найдем ВС по т. Пифагора. BC = √(BD² + 8,5²) (дм)
№2 а) В прямоугольном треугольнике, катет лежащий напротив угла в 30°, равен половине гипотенузы. 17 * 2 = 34 (мм) - длина гипотенузы. ответ: 34 мм.
в) 48 : 24 = 1/2 - это отношение катета и гипотенузы. Т. к. катет равен половине гипотенузы, значит, он лежит напротив угла в 30°. Т.к. Δ прямоугольный, значит один из углов равен 90°. 180° - 90° - 30° = 60° - третий угол. ответ: 90°; 60°; 30°.
120 * 86 60*86 12*86
= =
-12 * (- 8целых6/10) = -12 * (- 86/10) = 10 5 1
= 12*86 = 1032
1032 94 10320 -94
- = =
1032 - 9.4 = 1032 - 9целых4/10 = 1 10 10
= 10226/10 = 5113/5
№1
а) Рассмотрим ΔBCD.
∠BDC = 90°, т.к. CD⊥BD.
CD = AB = 34 см
Найдем ВС по т. Пифагора.
BC = √(BD² + 34²) (см)
б) Рассмотрим ΔBCD.
∠BDC = 90°, т.к. CD⊥BD.
CD = AB = 8,5 дм
Найдем ВС по т. Пифагора.
BC = √(BD² + 8,5²) (дм)
№2
а) В прямоугольном треугольнике, катет лежащий напротив угла в 30°,
равен половине гипотенузы.
17 * 2 = 34 (мм) - длина гипотенузы.
ответ: 34 мм.
в) 48 : 24 = 1/2 - это отношение катета и гипотенузы.
Т. к. катет равен половине гипотенузы,
значит, он лежит напротив угла в 30°.
Т.к. Δ прямоугольный, значит один из углов равен 90°.
180° - 90° - 30° = 60° - третий угол.
ответ: 90°; 60°; 30°.