С разными знаменателями: 5 1/2 + 7/8= 5 11/8 или 6 3/8 целых То есть, чтобы сложить смешанное число с обыкновенной дробью, нужно целую часть переписать (в данном случае это 5 целых), затем найти общий знаменатель (то есть такое число, которое делится и на 8 и на 2, это 2, так как 8:2=4, 2:2=1, но это в данном случае). Потом написать дополнительные множители, для этого общий знаменатель 8 делим вначале на 2, затем на 8. 8:2=4 (дополнительный множитель к первой дроби), 8:8=1 (дополнительный множитель ко второй дроби). Умножаем числитель первой дроби на её дополнительный множитель, то есть 1 (числитель 1 дроби) умножаем на 4 (дополнительный множитель 1 дроби). Тоже самое делаем со второй дробью. 7 (числитель 2 дроби) умножаем на 1 (дополнительный множитель 2 дроби).
a = b-5
НАЙТИ
a=? b=?
РЕШЕНИЕ
Приводим к общему знаменателю (и забываем о нём).
3*(a-3)*b = 3*a*(b+4) - b*(b+4)
3*a*b - 9*b = 3*a*b + 12*a - b² - 4*b
Упрощаем и делаем подстановку: a = b-5
b² - 5*b - 12*(b-5) = 0
Упростим
b² - 17*b + 60 = 0
Решаем квадратное уравнение.
Дискриминант - D = 49, √49 = 7 и находим корни - b₁ = 12, b₂ = 5
b = 12 и a = 12-5 = 7
ОТВЕТ Дробь 7/12
Проверим второй корень уравнения:
b = 5 и а = 0 или дробью a/b = 0.
Получили на 1/3 меньше исходного числа.
По условию задачи тоже почти подходит, но 0 - не дробь - не подходит.
То есть, чтобы сложить смешанное число с обыкновенной дробью, нужно целую часть переписать (в данном случае это 5 целых), затем найти общий знаменатель (то есть такое число, которое делится и на 8 и на 2, это 2, так как 8:2=4, 2:2=1, но это в данном случае). Потом написать дополнительные множители, для этого общий знаменатель 8 делим вначале на 2, затем на 8.
8:2=4 (дополнительный множитель к первой дроби), 8:8=1 (дополнительный множитель ко второй дроби). Умножаем числитель первой дроби на её дополнительный множитель, то есть 1 (числитель 1 дроби) умножаем на 4 (дополнительный множитель 1 дроби). Тоже самое делаем со второй дробью. 7 (числитель 2 дроби) умножаем на 1 (дополнительный множитель 2 дроби).