Розв'яжи задачу: Лис Микита та Вовчик-братик вийшли на зустріч один одному. Швидкість Лиса =4,2км/год, що в 1,2 рази більша за швидкість Вовчика. Через 1,5 годин вони зустрілися. Яка відстань була між на початку?
Сначала найдём сколько во втором ящике, для этого надо 60+52, а потом надо найти разность этой суммой с числом 90. Объясняю почему: в 60кг есть кг первого и второго ящика, а в 52 третьего и опять второго, значит в сумме чисел 60+52 будет килограммы первого ящика, третьего и два ящика "второго". Сложа 60+52 будет 112, а 112-90 будет 22. Ровно 22 килограмма во втором ящике. Поясняю, в 90 есть килограммы первого, второго и третьего, а в 112, как раньше я сказала, килограммы первого, третьего и два ящика "второго". Когда мы вычли 112-90, то мы убрали первый ящик, третий и один ящик "второго". Итог, осталось лишь сколько килограмм во втором. Остальное просто. Надо из 60 килограмм вычесть 22, найдём тогда мы сколько в первом ящике, будет 38. Из 52 те же 22 килограмма, найдём сколько в третьем ящике. И вот мы нашли все ящики, а точнее сколько в них килограмм. Если проверить, надо сложить все числа, будет 90 кг. ответ: в первом ящике 38кг, во втором 22кг, в третьем 30кг. Всё это объяснение для Вас, писать не надо (Мало ли) А вот это решение Всё это в числах выглядит вот так: 1)60+52=112 2)112-90=22 3)60-22=38 4)52-22=30 Надеюсь объяснила хорошо и Вы поняли, как решать такие задачи! Удачи :3
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8