(Розв'яжи задачу. Склади та розв'яжи обернену задачу, щоб
шуканим у ній було число 7.)
Для зведення будинку з кон-
структора діти взяли 18 великих
деталей і 16 маленьких. Серед
них 25 деталей були синього ко-
льору, решта — червоні. Скільки
червоних деталей використали
діти?
Если все двугранные углы при основании пирамиды равны, то высоты боковых граней равны между собой, а их проекции на основание - это радиусы r вписанной окружности в основание.
Отсюда ответ на первый вопрос:
вершина S пирамиды SABC проецируется в центр вписанной в основание пирамиды окружности.
Находим r = (a + b - c)/2.
Гипотенуза с = √(6² + 8²) = 10 см.
Тогда r = (6 + 8 - 10)/2 = 2 см.
Высота А боковой грани равна:
А = r/cos60° = 2/(1/2) = 4 см.
Периметр основания Р = 6+8+10 = 24 см.
Площадь боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*24*4 = 48 см².
Площадь основания So = (1/2)ab = (1/2)*6*8 = 24 см².
ответ на второй вопрос: S = Sбок + So = 48 + 24 = 72 см².
Решение 1
Угол NBA — вписанный, поэтому он равен половине дуги, на которую он опирается. Следовательно, дуга AN = 2∠NBA = 2 · 68° = 136°. Диаметр AB делит окружность на две равные части, поэтому величина дуги ANB равна 180°. Откуда дуга NB = 180° − 136° = 44°. Угол NMB — вписанный, поэтому он равен половине дуги, на которую он опирается, то есть равен 44°/2 = 22°.
ответ: 22.
Решение 2
Диаметр АВ делит окружность на две дуги, равные 180º. Угол NBA вписанный, значит равен половине дуги, на которую он опирается. Отсюда найдем дугу NA=68°*2=136°. Дуга NB=180-136=44°. Угол NMB вписанный и опирается на дугу NB, поэтому угол NMB=44/2=22°.
ответ: 22º.
0
ответответ дан Степандио
∠NBA опирается на дугу AN => AN=2NBA=136, Дуга AB=180(половина всей длины окружности), дуга NB=АВ-АN=44, ∠NMB опирается на дугу NB=>NB=2NMB=>NB=22
0