С 492. 1 бөлшегінің бөлімін өзгертпей, одан: 2 есе, 3 есе, 4 есе, 6 есе кіші бөлшектерді жазыңдар. 2) бөлшегінің алымын өзгертпей, одан 2 есе, 4 есе, 8 есе үлкен бөлшектерді жазыңдар.
Остаток от деления на число 8 может быть число 0,1,2,3,4,5,6,7
Остаток от деления на число 5 может быть число 0,1,2,3,4
Остаток от деления на число 3 может быть число 0,1,2
Так как 13=7+4+2 - равен сумме значений максимальных соответствующих остатков, то при деления искомого числа на 8 остаток 7, на 5 остаток 4, на 3 остаток 2
Далее методом перебора:
999 при делении на 8 дает остаток 7, при делении на 5 остаток 4, но делится нацело на 3 - не подходит
999-8=991 при делении на 8 дает остаток 7 , при делении на 5 остаток 1 - не подходит
991-8=983 при делении на 5 остаток 3 - не подходит
983-8=975 делится нацело на 5 - не подходит
975-8=967 при делении на 5 остаток 2 - не подходит
967-8=959 при делении на 5 остаток 4, при делении на 3 остаток 2 - оно искомое
Остаток от деления на число 8 может быть число 0,1,2,3,4,5,6,7
Остаток от деления на число 5 может быть число 0,1,2,3,4
Остаток от деления на число 3 может быть число 0,1,2
Так как 13=7+4+2 - равен сумме значений максимальных соответствующих остатков, то при деления искомого числа на 8 остаток 7, на 5 остаток 4, на 3 остаток 2
Далее методом перебора:
999 при делении на 8 дает остаток 7, при делении на 5 остаток 4, но делится нацело на 3 - не подходит
999-8=991 при делении на 8 дает остаток 7 , при делении на 5 остаток 1 - не подходит
991-8=983 при делении на 5 остаток 3 - не подходит
983-8=975 делится нацело на 5 - не подходит
975-8=967 при делении на 5 остаток 2 - не подходит
967-8=959 при делении на 5 остаток 4, при делении на 3 остаток 2 - оно искомое
959=8*119+7
959=5*191+4
959=3*319+2
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:
Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18
(Если что это как пример так ты сможешь сделать это одно и тоже почти!)