Пусть размеры таблицы - n*m. Тогда изначальная сумма под слонами была 1*1 + 1 *n + m*1 + n*m = (n + 1) + m(n + 1) = (n+1)(m+1).
Пусть расстояние, на которое ходили слоны - k. Слоны ходят по диагонали, поэтому их координаты по вертикали или горизонтали изменияются на одно и то же число k.
Пошаговое объяснение:
Пусть размеры таблицы - n*m. Тогда изначальная сумма под слонами была 1*1 + 1 *n + m*1 + n*m = (n + 1) + m(n + 1) = (n+1)(m+1).
Пусть расстояние, на которое ходили слоны - k. Слоны ходят по диагонали, поэтому их координаты по вертикали или горизонтали изменияются на одно и то же число k.
Посчитаем новую сумму:
(1 + k) * (1 + k) + (1 + k) * (n - k) + (m - k) * (1 + k) + (n - k) * (m - k) =
(1 + k) * ( 1 + k + n - k + m - k) + (n - k) * (m - k) =
(k + 1) * (n + m - k + 1) + n * m - k * (n + m) + k * k =
k * (n + m) - k * k + k + n + m - k + 1 + n *m - k * (n + m) + k * k =
n + m + 1 + n *m =
(n + 1)(m + 1).
Получили то же самое число, что и требовалось доказать.
Пошаговое объяснение:
произведение равно 0,когда один из множителей равен 0,поэтому решение очень простое.
-5(х+5)=0 3,7(4,6+у)=0 -3\4(15 2\3 -х)=0
х+5=0 4,6+у=0 15 2\3 -х=0
х=-5 у=-4,6 х=15 2\3
1 3\7 (х- 3 1\4)=0
х- 3 1\4=0
х= 3 1\4
(х-5 1\3) (х+ 4 2\7)=0
(х-5 1\3)=0 (х+ 4 2\7)=0
х= 5 1\3 х= - 4 2\7
(х+5,6)(х+ 8 1\12)=0
(х+5,6)=0 (х+ 8 1\12)=0
х= -5,6 х= - 8 1\12