1) Первым делом надо сократить дробь и сделать её правильной:
2) Затем есть два случая:
а) Знаменатель представляется в виде произведения степени двойки на степень пятёрки
Домножаем числитель и знаменатель на нужную степень двойки/пятёрки, чтобы в знаменателе оказалась степень десятки
Переводим в десятичную дробь: записываем числитель, ставим запятую перед n-ной слева цифрой, где n - степень десятки в знаменателе (в нашем случае 2), при надобности дописываем необходимое количество нулей:
б) Знаменатель не представляется в виде произведения степени двойки на степень пятёрки (делится на простое число, не равное двум или пяти, в нашем случае - 7)
В таком случае, сделав дробь снова неправильной () надо просто делить в столбик числитель на знаменатель, но предварительно поставив после числителя запятую и несколько нулей. Затем производит деление в столбик до тех пор, пока в вычитаемом (после приписывания нуля) не окажется то число, которое до этого уже было вычитаемым, когда уже приписывали нули после запятой:
_1 7,0 0 0 0 0 0 0 0 | 7
1 4 | 2,428571...
_3 0 <-- это число повторится
2 8
_2 0
1 4
_6 0
5 6
_4 0
3 5
_5 0
4 9
_1 0
7
3 0 <-- вот оно
С первого появления этого вычитаемого (включительно) до второго (не включительно) и будет период: В данном случае, когда первый раз появилось 30 (повторившееся вычитаемое), мы записали четвёрку (в данном случае она сразу после запятой, но так будет не всегда). Она - первая цифра в периоде. Когда во второй раз появилось 30 - мы (начиная с той четвёрки) записали 428571. Значит, это и есть период, т.е.
Рассмотрим на двух примерах: и
1) Первым делом надо сократить дробь и сделать её правильной:
2) Затем есть два случая:
а) Знаменатель представляется в виде произведения степени двойки на степень пятёрки
Домножаем числитель и знаменатель на нужную степень двойки/пятёрки, чтобы в знаменателе оказалась степень десятки
Переводим в десятичную дробь: записываем числитель, ставим запятую перед n-ной слева цифрой, где n - степень десятки в знаменателе (в нашем случае 2), при надобности дописываем необходимое количество нулей:
б) Знаменатель не представляется в виде произведения степени двойки на степень пятёрки (делится на простое число, не равное двум или пяти, в нашем случае - 7)
В таком случае, сделав дробь снова неправильной () надо просто делить в столбик числитель на знаменатель, но предварительно поставив после числителя запятую и несколько нулей. Затем производит деление в столбик до тех пор, пока в вычитаемом (после приписывания нуля) не окажется то число, которое до этого уже было вычитаемым, когда уже приписывали нули после запятой:
_1 7,0 0 0 0 0 0 0 0 | 7
1 4 | 2,428571...
_3 0 <-- это число повторится
2 8
_2 0
1 4
_6 0
5 6
_4 0
3 5
_5 0
4 9
_1 0
7
3 0 <-- вот оно
С первого появления этого вычитаемого (включительно) до второго (не включительно) и будет период: В данном случае, когда первый раз появилось 30 (повторившееся вычитаемое), мы записали четвёрку (в данном случае она сразу после запятой, но так будет не всегда). Она - первая цифра в периоде. Когда во второй раз появилось 30 - мы (начиная с той четвёрки) записали 428571. Значит, это и есть период, т.е.
Пошаговое объяснение:
Дано: y =0,5*x²+-3*x+0 - квадратное уравнение.
Положительная парабола - ветви вверх.
Пошаговое объяснение: a*x² + b*x + c = 0 Вычисляем дискриминант - D.
D = b² - 4*a*c = -3² - 4*(0,5)*(0) = 9 - дискриминант. √D = 3.
Вычисляем корни уравнения.
x₁ = (-b+√D)/(2*a) = (3+3)/(2*0,5) = 6/1 = 6 - первый корень
x₂ = (-b-√D)/(2*a) = (3-3)/(2*0,5) = 0/1 = 0 - второй корень
6 и 0 - корни уравнения - точки пересечения с осью ОХ.
Минимальное значение по середине корней при Х=3
У(3) = 1/2*9 - 3*3 = 4.5 * 9 = - 4.5
Таблица с точками для построения графика - в приложении.
Рисунок с графиком в приложении.