ответ:Каждые уравнения решаются по своему. В квадратных нужно решать через дискриминант по специальной формуле. Где то нужно вынести за скобки, к примеру (2х^2-х)=0 тут выносишь икс за скобку и пишешь либо х=0 либо 2х-1=0, следовательно корни уравнения буду х=0 и х=1/2. Есть так же уравнения решаемые по схеме Горнера. В таких уравнениях содержатся степени больше чем 2. Там тоже своя система. Ну а логарифмические и показательние так это вообще отдельная тема! Так что, дорогой друг, тут так все и не объяснить)
Обозначим за x длину первого прыжка кузнечика, тогда длины остальных прыжков равны 2x, 4x, 8x, 16x. Предположим противное, пусть последним прыжком кузнечик вернулся в исходную точку. Тогда перед последним прыжком он находился на расстоянии 16x от неё. Покажем, что за четыре первых прыжка он не мог попасть в точку на расстоянии 16x от исходной. Действительно, суммарная длина первых четырех прыжков равна x+2x+4x+8x=15x, поэтому преодолеть расстояние в 16x с их невозможно. Следовательно, после пятого прыжка кузнечик не сможет вернуться в исходную точку. Аналогично можно доказать, что после любого другого прыжка кузнечик не сможет вернуться в исходную точку. Например, для третьего прыжка его длина равна 4x, а длина двух предыдущих прыжков равна x+2x=3x<4x.
ответ:Каждые уравнения решаются по своему. В квадратных нужно решать через дискриминант по специальной формуле. Где то нужно вынести за скобки, к примеру (2х^2-х)=0 тут выносишь икс за скобку и пишешь либо х=0 либо 2х-1=0, следовательно корни уравнения буду х=0 и х=1/2. Есть так же уравнения решаемые по схеме Горнера. В таких уравнениях содержатся степени больше чем 2. Там тоже своя система. Ну а логарифмические и показательние так это вообще отдельная тема! Так что, дорогой друг, тут так все и не объяснить)
Пошаговое объяснение: