Середина с полуокружности соединена с концами диаметра ав и через середины отрезков ас и св проведена хорда каждый из отрезков хорды, расположенных вне треугольника авс, равен m. найдите радиус окружности
Возьмём эти неизвестные числа за x, тогда получим двойное неравенство:
10,53 < x < 10,55
Теперь, можем написать, что x = 10,54, но это одно число, необходимо найти еще 2.
Вспомним, что помимо сотых частей есть тысячные, десятитысячные, стотысячные и т.д. Чтобы в числах 10,53 и 10,55 сотые части превратить в тысячные, нужно дописать к ним по нулю, получим двойное неравенство:
10,530 < x < 10,550
Теперь найти значение x легко;
, что значит, что x может быть равен 10,531; 10,532; 10,533; 10,534; 10,535; 10,536; 10,537; 10,538; 10,539; 10,541; 10,542; 10,543; 10,544; 10,545; 10,546; 10,547; 10,548; 10,549.
По условию, выпишем только три любые числа, пусть это будут 10,533; 10,534; 10,535.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.Для линейного графа раскрасим вершины через одну, и возьмём тот цвет, представителей которого не меньше. Это даст как минимум половину. Если цикл имеет чётную длину, то мы также выбираем половину -- через одного. Наконец, пусть цикл имеет длину 2k+1, где k>=2. Тогда можно взять k человек с номерами 2, 4, ... , 2k. Доля числа взятых равна k/(2k+1)>=2/5. Отсюда следует, что мы можем взять как минимум 2/5 от общего числа, а это и есть 12. Они попарно знакомы.
Возьмём эти неизвестные числа за x, тогда получим двойное неравенство:
10,53 < x < 10,55
Теперь, можем написать, что x = 10,54, но это одно число, необходимо найти еще 2.
Вспомним, что помимо сотых частей есть тысячные, десятитысячные, стотысячные и т.д. Чтобы в числах 10,53 и 10,55 сотые части превратить в тысячные, нужно дописать к ним по нулю, получим двойное неравенство:
10,530 < x < 10,550
Теперь найти значение x легко;
, что значит, что x может быть равен 10,531; 10,532; 10,533; 10,534; 10,535; 10,536; 10,537; 10,538; 10,539; 10,541; 10,542; 10,543; 10,544; 10,545; 10,546; 10,547; 10,548; 10,549.
По условию, выпишем только три любые числа, пусть это будут 10,533; 10,534; 10,535.
ответ: 10,533; 10,534; 10,535.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.Для линейного графа раскрасим вершины через одну, и возьмём тот цвет, представителей которого не меньше. Это даст как минимум половину. Если цикл имеет чётную длину, то мы также выбираем половину -- через одного. Наконец, пусть цикл имеет длину 2k+1, где k>=2. Тогда можно взять k человек с номерами 2, 4, ... , 2k. Доля числа взятых равна k/(2k+1)>=2/5. Отсюда следует, что мы можем взять как минимум 2/5 от общего числа, а это и есть 12. Они попарно знакомы.