Возьмем катер туда плыл 48 км со скоростью Vк+Vр , обратно 48 км со скоростью Vк-Vр и всёэто за 7 часов и того получаем уравнение :
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр. А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр). так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
1. Приведите пример пятизначного числа кратного 12, произведение цифр которого равно 40. В ответе укажите два таких числа.
2. Найдите трехзначное натуральное число, большее 600, которое при делении на 4, на 5 и на 6 дает в остатке 3, и цифры которого расположены в порядке убывания слева направо. В ответе укажите хотя бы одно такое число.
3. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите два возможных варианта этих чисел.
4. Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 21. В ответе укажите все возможные числа.
5*. На складе имеются ножи и вилки. Общее число тех и других больше 300, но меньше 400. Если ножи и вилки вместе считать десятками или дюжинами, то в обоих случаях получается целое число десятков и целое число дюжин. Сколько было ножей и вилок на складе, если ножей было на 160 меньше, чем вилок?
48/(Vк+Vр) + 48/(Vк-Vр) = 7 (1)
Возмём плот. До момента встречи он проплыл со скоростью Vр по течению 12 км. время плота до встречи 12/Vр.
А катер плыл 48 км по течению со скоростью Vк+Vр и 48-12=36 км со скоростью Vк-Vр, время катера до встречи 48/(Vк+Vр) + 36/(Vк-Vр).
так как они плыли одинаковое время до встречи приравняем
12/Vр =48/(Vк+Vр) + 36/(Vк-Vр) (2)
и того у нас система 2х уравнений (1) и (2) с 2мя неизвестными и решаем
1. Приведите пример пятизначного числа кратного 12, произведение цифр которого равно 40. В ответе укажите два таких числа.
2. Найдите трехзначное натуральное число, большее 600, которое при делении на 4, на 5 и на 6 дает в остатке 3, и цифры которого расположены в порядке убывания слева направо. В ответе укажите хотя бы одно такое число.
3. Найдите четырёхзначное число, кратное 88, все цифры которого различны и чётны. В ответе укажите два возможных варианта этих чисел.
4. Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 21. В ответе укажите все возможные числа.
5*. На складе имеются ножи и вилки. Общее число тех и других больше 300, но меньше 400. Если ножи и вилки вместе считать десятками или дюжинами, то в обоих случаях получается целое число десятков и целое число дюжин. Сколько было ножей и вилок на складе, если ножей было на 160 меньше, чем вилок?