В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
nastya2736
nastya2736
21.11.2020 19:22 •  Математика

Сколько существует таких натуральных чисел n, что остаток от деления 2003 на n равен 23?

Показать ответ
Ответ:
Mas4323
Mas4323
25.05.2020 03:00

Можно отнять остаток и тогда число должно нацело делится на n.

То есть 1980 делится на n нацело причем n>23 в противном случае остаток от деления не был бы 23.

Разложим на простые множител число 1980=2*2*5*3*3*11=(2^2)*(3^2)*5*11.

Количество множителей найдем по формуле:

(1+k1)(1+k2)... Где k1,k2, это степени делителей в разложении числа на простые множители. Находим (1+2)(1+2)(1+1)(1+1)=3*3*2*2=36 делителей у числа 1980 но нужно отобрать те что больше 23. Делители числа 1980 которые меньше 23 это 1,2,3,4,5,6,9,10,11,12,15,18,20,22 то есть 14 чисел. отнимем от 36-14=22

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота