Пусть количество углов к. Если центр окружности соединить с концами стороны вписанного тр-ка, то половина угла при вершине равна 180/к Отношение радиусов вписанной и описанной оружности : равно cos( 180/k) Отношение площадей равно отношению квадратов радиусов сторон, cos( 180/k)= sqrt(3)/2 Значит 180/k=30 градусов. Следовательно k=6 Периметр многоугольника равен 12. Но в правильном шестиугольнике радиус описанной окружности равен стороне и равен 2. Радиус вписанной окружности равен sqrt(3) sqrt - квадратный корень.
{ x - 2y + 3z = -3
{ 7x + y - z = 10
Определитель Delta
|2 1 -1|
|1 -2 3|=2(-2)(-1)+1*1(-1)+7*1*3-7(-2)(-1)-1*1(-1)-1*3*2=4-1+21-14+1-6=5
|7 1 -1|
Определитель Delta(x)
|5 1 -1|
|-3 -2 3|=5(-2)(-1)+1(-3)(-1)+1*10*3-10(-2)(-1)-1(-3)(-1)-1*3*5=5
|10 1 -1|
x = Delta(x) / Delta = 5/5 = 1
Определитель Delta(y)
|2 5 -1|
|1 -3 3|=2(-3)(-1)+1*10(-1)+7*5*3-7(-3)(-1)-1*5(-1)-10*3*2=25
|7 10 -1|
y = Delta(y) / Delta = 25/5 = 5
Определитель Delta(z)
|2 1 5|
|1 -2 -3|=2(-2)*10+1*1*5+7*1(-3)-7(-2)*5-1*1*10-1*2(-3)=10
|7 1 10|
z = Delta(z) / Delta = 10/5 = 2
ответ: (1, 5, 2)
Если центр окружности соединить с концами стороны вписанного тр-ка, то половина угла при вершине равна 180/к
Отношение
радиусов вписанной и описанной оружности : равно cos( 180/k)
Отношение площадей равно отношению квадратов радиусов сторон,
cos( 180/k)= sqrt(3)/2
Значит 180/k=30 градусов. Следовательно k=6
Периметр многоугольника равен 12. Но в правильном шестиугольнике радиус описанной окружности равен стороне и равен 2. Радиус вписанной окружности равен sqrt(3)
sqrt - квадратный корень.