В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
DayanaTolepber
DayanaTolepber
23.06.2020 19:17 •  Математика

Составь задачи на встречное и противоположное движение, используя данные таблицы и схемы.
Скоростной поезд 220км/ч
Скорый поезд 140км/ч
Товарный поезд 65 км /ч
Легковой автомобиль 85 км/ч
Автобус 65км/ч
Грузовой автомобиль 58км/ч
Заранее

Показать ответ
Ответ:
12323543654
12323543654
11.07.2022 09:30

Вероятность того, что наступит либо a, либо b, равна 0,6 - сложение вероятностей наступления событий а, b:

(1) Pa+Pb=0,6

Вероятность того, что наступит либо a, либо c, равна 0,8, аналогично:

(2) Pa)+Pс=0,8

Так как вероятно только три три элементарных события a, b и c в опыте, то вероятность наступления события либо a, либо b, либо с - "вся вероятность" P равна 1:

P=1

P=Pa+Pb+Pc

(3) Pa+Pb+Pc=1

Составим и решим систему уравнений (1), (2), (3):

{Pa+Pb=0,6

{Pa+Pс=0,8

{Pa+Pb+Pc=1

{Pb=0,6-Pa

{Pc=0,8-Pa

{Pa+(0,6-Pa)+(0,8-Pa)=1

-Pa+1,4=1

Pa=0,4

Pb=0,6-Pa=0,6-0,4=0,2

Pc=0,8-Pa=0,8-0,4=0,4

Проверка:

Pa+Pb+Pc=0,4+0,2+0,4=1=P - решено верно.

ответ: вероятность события a 0,4; вероятность с-тия b 0,2; вероятность события c 0,4.

0,0(0 оценок)
Ответ:
liloanimatronic
liloanimatronic
24.10.2021 06:47
ответ:1) Самая красивая формула в математике или Формула Эйлера

Доказал ее великий Леонард Эйлер. Это формула

e^i^\pi+1=0

"е" в степени произведения "и" на "пи" плюс один равно 0

Здесь есть все важные области математики:

"пи" из геометрии

"и" из алгебры

"е" из математического анализа

единица из арифметики

2) Формула Герона

Формула для вычисления площади треугольника со сторонами а, b и с

\sqrt{p(p-a)(p-b)(p-c)} где p=\dfrac{a+b+c}2 так называемый "полупериметр"

Корень из произведения полупериметра на разность полупериметра и первой стороны на разность полупериметра и второй стороны на разность полупериметра и третьей стороны

3) Формула Кардано

Математики очень долго пытались найти решение уравнений третьей степени, и Кардано смог найти такое

Решение уравнения y^3+py+q=0

y_1=a+b\\y_2_,_3=-\dfrac{a+b}2\pm i\dfrac{a-b}2\sqrt3

где

a=\sqrt[3]{-\dfrac q2+Q}\\b=\sqrt[3]{-\dfrac q2-Q}

А Q в свою очередь равно

Q=\Bigg(\dfrac p3\Bigg)^3+\Bigg(\dfrac q2\Bigg)^2

Корни многочлена 3 степени относительно х при старшем коэффициенте 1  и коэффициенте при х² 0 выражаются либо суммой а и б, или суммой или разности  их полусуммы со знаком минус и их полуразности, умноженной на корень из минус трех, сами же эти числа равны кубическому корню из отрицательной половины свободного члена плюс или минус некоторое число Q, которое равно сумме куба трети коэффициента перед первой степенью и квадрата половины свободного члена

4) Бином Ньютона

Простая формула для раскрытия скобок (a+b)^n при натуральных n

(a+b)^n=\displaystyle\sum\limits^n_{k=0}C^k_na^nb^{n-k}

Сумма степеней а от n до 0 умноженные на степень b от 0 до n умноженные на число сочетаний из n по текущий член многочлена

5) Основная теорема арифметики

Любое натуральное число больше 1 можно разложить в произведение степеней простых чисел единственным образом с точностью до перестановки множителей

6) Основное Тригонометрическое Тождество (ОТТ)

Эту формулу все знают со школы:

\sin^2 a+\cos^2a=1

Сумма квадратов синуса и косинуса одного аргумента равна 1

7) Формула Эйлера для любого плоского графа

V-E+F-2=0

Число вершин в любом графе минус число ребер в этом же графе плюс число граней в этом же графе равно 2 для любого графа

8) Первый замечательный предел

\displaystyle \lim_{x\to0} \dfrac{\sin x}x=1

Отношение синуса к его аргументу при аргументе стремящимся к 0 равно 1 для любого аргумента

9) Второй замечательный предел

\displaystyle \lim_{x \to 0} \Bigg(1+x\Bigg)^{\dfrac1x}=e\\\lim_{x \to \infty} \Bigg(1+\dfrac1x\Bigg)^{x}=e

сумма 1 и х в степени обратной х при х стремящимся к 0 равно е

сумма 1 и обратной х в степени х при х стремящимся к бесконечности равно е

10) Разложение числа пи в ряд

\pi=4\displaystyle\sum\limits^\infty_{k=1}\dfrac{(-1)^{k-1}}{2k-1}=4-\dfrac43+\dfrac45-\dfrac47+\dfrac49-\dfrac4{11}+...

Пи равно учетверенной знакочередующейся сумме чисел обратных нечетным

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота