Функция определена и непрерывна на всей числовой прямой. Находим производную и решаем уравнение f'(x)=0 f'(x)=(1,5x²-30x+48lnx+4)'=3x-30+(48/x)=0 3x²-30x+48=0 |:3 x²-10x+16=0 D=(-10)²-4*16=100-64=36 x=(10-6)/2=2 x=(10+6)/2=8 Нашли критические точки. Отложим на числовой прямой найденные критические точки и определим знак производной на интервалах + - + (2)(8) При переходе через точку х=2 производная меняет знак с "+" на "-" следовательно в этой точке функция достигает максимума, а при переходе через точку х=8 с "-" на "+" значит в этой точке функция достигает минимума.
Это значит, что два числа, наугад взятые из некоторого набора чисел, различны. Например, есть набор чисел, представляющих собой целые значения логарифма х. И есть ещё один набор чисел - целые значения тангенса х. Логарифм - монотоння функция, тангенс - периодическая. Поэтому два ЛЮБЫХ числа из первого набора будут гарантированно различны (что и есть попарное различие) , а вот для второго набора РАЗНЫМ значениям икса могут соответствовать ОДИНАКОВЫЕ значения тангенса. То есть числа из этого набора не будут ВСЕГДА попарно различными, хотя там МОЖНО БУДЕТ НАЙТИ такие пары.
f'(x)=(1,5x²-30x+48lnx+4)'=3x-30+(48/x)=0
3x²-30x+48=0 |:3
x²-10x+16=0
D=(-10)²-4*16=100-64=36
x=(10-6)/2=2 x=(10+6)/2=8
Нашли критические точки.
Отложим на числовой прямой найденные критические точки и определим знак производной на интервалах
+ - +
(2)(8)
При переходе через точку х=2 производная меняет знак с "+" на "-" следовательно в этой точке функция достигает максимума, а при переходе через точку х=8 с "-" на "+" значит в этой точке функция достигает минимума.