Проведем DO — высоту пирамиды и перпендикуляры DK, DM и DN к соответствующим сторонам ΔАВС.
по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Где ∠DKO = ∠DMO = ∠DNO = 60° — линейные углы данных двугранных углов.
следовательно, треугольники DKO, DMO и DNO равны по катету и острому углу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание.
по теореме пифагора в прямоугольном ΔAВС:
найдем площадь ΔAВС
S=1/2*АС*АВ=1/2*6*8=24 кв см
с другой стороны S=pr=24/112= 2 см
тогда ΔDMO
DO=MO*tg60=r Нашли высоту пирамиды
Теперь надо по теореме пифагора найти высоты боковых граней в ΔDКO
2940+980=3920 кг - всего картофеля
3920/5=784 кг - пятая часть
784/ 16=49 кг - в 1 мешке
3920/49=80 мешков Чтобы разложить пятую часть нужно 16 мешков, значит для всего картофеля нужно в 5 раз больше мешков.
16*5=80 мешков
2)два яблока режутся на 3 части, а остальные три яблока на 2 части. каждый мальчик берет треть яблока и его половинку.
10 яблок разделить на 3 части а 1 яблоко на 2 части получится 32 . 32:12=3
надо провести высоту пирамиды.
Проведем DO — высоту пирамиды и перпендикуляры DK, DM и DN к соответствующим сторонам ΔАВС.
по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Где ∠DKO = ∠DMO = ∠DNO = 60° — линейные углы данных двугранных углов.
следовательно, треугольники DKO, DMO и DNO равны по катету и острому углу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание.
по теореме пифагора в прямоугольном ΔAВС:
найдем площадь ΔAВС
S=1/2*АС*АВ=1/2*6*8=24 кв см
с другой стороны S=pr=24/112= 2 см
тогда ΔDMO
DO=MO*tg60=r Нашли высоту пирамиды
Теперь надо по теореме пифагора найти высоты боковых граней в ΔDКO
DO^2+OK^2=DK^2
Sобщ= Sabc+Sabd+Sacd+Sbcd=24+1/2*6*4+1/2*8*4+1/2*10*4=
=24+12+16+20=72 кв см
если только боковая, то
Sбок =Sabd+Sacd+Sbcd=1/2*6*4+1/2*8*4+1/2*10*4=
=12+16+20=48 кв см