СРперпендикулярність прямих. Перпендикулярність прямої і площини 59
ВАРІАНТ 4
1° ( ). З точки N до площини о проведено перпендикуляр NK
і похилу NB (рис. 43). Знайдіть NK, якщо ZNBK = 60°.
BN= 413 CM.
2° ( ). Прямі AB, AC i AD попарно перпендикулярні (рис. 44).
Знайдіть BC, якщо AC = 4 см; CD = 5 см; BD = 7 см.
N
B
ак
Основная формула: |A∪B| = |A| + |B| - |A∩B|.
Теперь решение задачи.
Пусть Ω - множество о студентов.
А - множество студентов из о которые изучают английский,
B - множество студентов из о которые изучают немецкий,
C - множество студентов из о которые изучают русский.
Понятно, что A⊂Ω, B⊂Ω, C⊂Ω.
По условию задачи:
|Ω| = 100,
|A∩B∩C| = 5
|B∩C| = 10
|A∩B| = 8
|A∩C| = 20
|B| = 30
|C| = 28
|A| = 50.
a) |Ω\ A∪B∪C| = |Ω| - |A∪B∪C|.
|A∪B∪C| = |A| + |B∪C| - |A∩(B∪C)| = |A| + |B| + |C| - |B∩C| - |(A∩B)∪(A∩C)| =
= |A| + |B| + |C| - |B∩C| - ( |A∩B| + |A∩C| - |A∩B∩A∩C|) =
= |A| + |B| + |C| - |B∩C| - |A∩B| - |A∩C| + |A∩B∩C| =
= 50 + 30 + 28 - 10 - 8 - 20 + 5 = 108 - 38 + 5 = 70 + 5 = 75.
|Ω\ A∪B∪C| = 100 - 75 = 25.
б)
Искомое количество = |A\ (B∪C)| + |B\ (A∪C)| + |C\ (A∪B)|,
|A\ (B∪C)| = |A\ (A∩(B∪C))| = |A| - |A∩(B∪C)| = |A| - |(A∩B)∪(A∩C)| =
= |A| - (|A∩B| + |A∩C| - |A∩B∩A∩C|) = |A| - |A∩B| - |A∩C| + |A∩B∩C| =
= 50 - 8 - 20 + 5 = 22+5 = 27.
Аналогично с двумя другими.
|B\ (A∪C)| = |B| - |B∩A| - |B∩C| + |A∩B∩C| = 30 - 8 - 10 + 5 = 12+5 = 17.
|C\ (A∪B)| = |C| - |C∩A| -|C∩B| + |A∩B∩C| = 28 - 20 - 10 + 5 = -2 + 5 = 3.
Искомое количество = 27 + 17 + 3 = 47.
в)
Искомое количество = |(A∩B)\C| + |(B∩C)\A| + |(A∩C)\B|.
|(A∩B)\C| = |(A∩B)\(A∩B∩C)| = |A∩B| - |A∩B∩C| = 8 - 5 = 3.
Аналогично с двумя другими:
|(B∩C)\A| = |B∩C| - |A∩B∩C| = 10 - 5 = 5.
|(A∩C)\B| = |A∩C| - |A∩B∩C| = 20 - 5 = 15.
Искомое количество = 3+5+15 = 23.
Пошаговое объяснение:
1. Находим производную функции
Приравниваем ее к нулю и решаем уравнение.
Определяем знак производной. Т.к. уравнение производной является параболой, ветви вверх, следовательно
Значит, в точке х=-1 имеем максимум, в точке х=3 - минимум. Вычисляем значения функции в этих точках.
ответ: 3
2. По результатам вычислений в пункте 1 даем ответ. Функция возрастает там, где производная положительная.
ответ: 6
3. Находим вторую производную
Приравниваем ее к нулю и решаем уравнение.
При х<1 у''<0
При х>1 у''>0
Следовательно, х=1 есть точка перегиба.
Вычисляем значение функции в точке перегиба
- точка перегиба
ответ: 9
4. По результатам предыдущего пункта находим интервалы вогнутости. Функция вогнута там, где вторая производная положительная.
ответ: 10
5. Результатам исследования удовлетворяет график, изображенный на рисунке 15
ответ: 15