Обозначим товары их начальными буквами: Х, Т, М.
3 человека купили Х+Т+М.
Они входят в число покупателей, купивших по две вещи, значит:
Т+Х купили 15-3=12 человек.
Т+М купили 19-3=16 человек.
М+Х купили 20-3=17 человек.
Всего этими покупателями куплено:
Телевизоров 12+3+16=31 (т)
Оставшиеся 37-31=6 телевизоров купили 6 человек.
Холодильников куплено теми, кто купил больше одного товара,
35-(12+3+17)=32 (х)
Оставшиеся купили 35-32=3 человека.
Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара.
Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи
и 6+3=9 (чел) купили по одному виду товаров.
Всего 48+9=57 человек.
Из вошедших в магазин 65-57=8 челове ушли без покупок.
Пошаговое объяснение:
Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49
Обозначим товары их начальными буквами: Х, Т, М.
3 человека купили Х+Т+М.
Они входят в число покупателей, купивших по две вещи, значит:
Т+Х купили 15-3=12 человек.
Т+М купили 19-3=16 человек.
М+Х купили 20-3=17 человек.
Всего этими покупателями куплено:
Телевизоров 12+3+16=31 (т)
Оставшиеся 37-31=6 телевизоров купили 6 человек.
Холодильников куплено теми, кто купил больше одного товара,
35-(12+3+17)=32 (х)
Оставшиеся купили 35-32=3 человека.
Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара.
Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи
и 6+3=9 (чел) купили по одному виду товаров.
Всего 48+9=57 человек.
Из вошедших в магазин 65-57=8 челове ушли без покупок.
Пошаговое объяснение:
Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49