Стороны основания прямоугольного параллелепипеда АВCDA1B1C1D1 равна 15 и 20 а боковое ребро равно 16 найдите косинус угла между плоскостью ВС1Д и плоскостью основания
Сечение сферы плоскостью есть окружность. Необходимо найти радиус этой окружности и по формуле длины окружности найти длину линии пересечения сферы плоскостью. Обозначим центр искомой окружности точкой А, центр сферы точкой О, а точкой В обозначим любую точку на линии пересечения плоскости со сферой. Тогда получим прямоугольный треугольник ОАВ, где угол А=90°, ОВ - радиус сферы, ОА - расстояние от центра сферы до центра окружности. По теореме Пифагора найдём АВ: АВ=√(ОВ²-ОА²)=√(2,6²-2,4²)=√(6,76-5,76)=√1=1 дм Далее по формуле длины окружности находим длину нашей линии: l=2πR=2π*1=2π≈2*3,14≈6,28 дм.
Обозначим центр искомой окружности точкой А, центр сферы точкой О, а точкой В обозначим любую точку на линии пересечения плоскости со сферой. Тогда получим прямоугольный треугольник ОАВ, где угол А=90°, ОВ - радиус сферы, ОА - расстояние от центра сферы до центра окружности.
По теореме Пифагора найдём АВ:
АВ=√(ОВ²-ОА²)=√(2,6²-2,4²)=√(6,76-5,76)=√1=1 дм
Далее по формуле длины окружности находим длину нашей линии:
l=2πR=2π*1=2π≈2*3,14≈6,28 дм.
Пошаговое объяснение:
1) 13^(-18+20) = 13 ^ 2=169
2) 7^(-54 - (-55) )= 7^(- 54 + 55)= 7^1=7
3) 8^(44 + (-76) - (-33)=8^1=8
4) 3^(16- (-4) + (-17) )= 3^(16 +4 -17) = 3^3= 27
5) 5^(-22-18 - (-42) ) = 5^ (-22-18 + 42)=5^2=25
6) 6^(8*-7):6^(-59)= 6^(-56-(-59)) = 6^ (-56+59)=6^3=216
7) 4^(-5*(-7) * 2(-71)=2^(2*(-5)*(-7) ) * 2^(-71) = 2^ 70 * 2^(-71)= 2 ^( 70-71) = 2^(-1)=1/2
8) 14^(-78) : 14^(-10 *8) = 14^(-78 -(- 80 ) )= 14^ (-78 +80) = 14 ^2= 196
9)9^13 * 3 ^ (-50)= 3 ^( 3*13) * 3(-50) = 3^(39-50)=3^(-11)
10) 0.5 * 10^(2-(-2) )= 0.5 * 10 ^ 4= 5 * 10^3 = 5000