На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.
Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя
если следовать моей логике,то получается у нас так..
100,300,700...
разберём изначально данные числа,и действующую здесь закономерность последовательности
было 100,стало 300,следовательно
число изменилось на +200,то есть 100+(200)= 300
дальше значит у нас 300,700
число изменилось на +400,то есть 300+(400)=700
думаю закономерность последовательности здесь ясна..
прибавляемая к изначальному числу сумма,с каждым разом увеличивается на 200,то есть
сначала к 100 прибавляем 200, получается 300,потом к триста прибавляем уже не те 200,а уже 400,ТК каждый раз,к получившемуся числу прибавляем на 200 больше..
На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.
Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя
если следовать моей логике,то получается у нас так..
100,300,700...
разберём изначально данные числа,и действующую здесь закономерность последовательности
было 100,стало 300,следовательно
число изменилось на +200,то есть 100+(200)= 300
дальше значит у нас 300,700
число изменилось на +400,то есть 300+(400)=700
думаю закономерность последовательности здесь ясна..
прибавляемая к изначальному числу сумма,с каждым разом увеличивается на 200,то есть
сначала к 100 прибавляем 200, получается 300,потом к триста прибавляем уже не те 200,а уже 400,ТК каждый раз,к получившемуся числу прибавляем на 200 больше..
ну и получаем..
100+200={300}
300+400={700}
700+600={1300}
1300+800={2100}
2100+1000=получается наше конечное число "3100"
вот и все решение данной закономерности..
пропущенные числа :1300,2100